Visualization Analysis \& Design

Tamara Munzner

Department of Computer Science University of British Columbia

Graphics Interface 2016 Invited Talk June 2 2016, Victoria BC

Why talk about a textbook to a room of experts?

- many folks here in graphics or HCl , but few in visualization
- my own roots in graphics, later added HCl quant methods, then HCl qual methods
- convince you of the value in thinking systematically about vis design
- decompose into comprehensive framework of principles and design choices
-situate specific examples within framework as concrete illustrations
- provide unified view that crosscuts entire field of visualization -infovis and scivis: addressing different kinds of data
- visual analytics: interweave data analysis \& transformation w/ interactive visual exploration
- caveat: my own background in infovis shines through!

Analysis framework: Four levels, three questions

- domain situation
- abstraction
[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG I5(6):92I-928, 2009 (Proc. InfoVis 2009).]
- what is shown? data abstraction
- often don't just draw what you're given: transform to new form
- why is the user looking at it? task abstraction
- idiom

- visual encoding idiom: how to draw
- interaction idiom: how to manipulate
[A Multi-Level Typology of Abstract Visualization Tasks
- algorithm
- efficient computation

Why is validation difficult?

- different ways to get it wrong at each level

1 Domain situation
You misunderstood their needs

O Data/task abstraction
You're showing them the wrong thingVisual encoding/interaction idiom
The way you show it doesn't work
m Algorithm
Your code is too slow

Why is validation difficult?

- solution: use methods from different fields at each level

anthropology/ ethnography	\& Domain situation Observe target users using existing tools Data/task abstraction	problem-driven work
design	Visual encoding/interaction idiom Justify design with respect to alternatives	θ
computer science	Algorithm	technique-driven work
cognitive	Analyze results qualitatively	
psychology	Measure human time with lab experiment (lab study)	
anthropology/	Observe target users after deployment (field study)	
ethnography	Measure adoption	

Why analyze?

- imposes a structure on huge design space

> - scaffold to help you think systematically about choices
> - analyzing existing as stepping stone to designing new

Θ Tree

Why?

Θ Actions
How?

TreeJuxtaposer

[TreeJuxtaposer: Scalable Tree Comparison Using Focus +Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453-462, 2003.]
\rightarrow Present \rightarrow Locate \rightarrow Identify

Θ SpaceTree
\rightarrow Encode \rightarrow Navigate \rightarrow Select \rightarrow Filter $\quad \rightarrow$ Aggregate
Θ TreeJuxtaposer
\rightarrow Encode \rightarrow Navigate \rightarrow Select \rightarrow Arrange
Θ Targets
\rightarrow Path between two nodes

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57-64.] ical -

What?

Why?
How?

What?

Types: Datasets and data

Θ Dataset Types

\rightarrow Tables
\rightarrow Networks

Θ Attribute Types
\rightarrow Categorical

\rightarrow Spatial
\rightarrow Fields (Continuous) $\quad \rightarrow$ Geometry (Spatial)

\rightarrow Ordered

$$
\rightarrow \text { Ordinal }
$$

\rightarrow Quantitative

Why?

What?

How?

- \{action, target\} pairs
- discover distribution
- compare trends
- locate outliers
- browse topology

Analyze
\rightarrow Consume

\rightarrow Produce

Θ Search

	Target known	Target unknown
Location known	$\ddots \cdot \cdot$ Lookup	$\ddots \because$

\rightarrow Query
\rightarrow Identify

\rightarrow Summarize

\leftrightarrow All Data

\leftrightarrow

\rightarrow Extremes illı.
Θ Network Data
\rightarrow Topology

\rightarrow Paths
Θ Spatial Data
\rightarrow Shape

Actions:Analyze, Query

- analyze
- consume
- discover vs present
- aka explore vs explain
- enjoy
- aka casual, social
-produce
- annotate, record, derive
- query
-how much data matters?
- one, some, all
- independent choices
-analyze, query, (search)
Θ Analyze
\rightarrow Consume

\rightarrow Produce
\rightarrow Annotate

Θ Query
\rightarrow Identify

\rightarrow Derive

\rightarrow Compare

\rightarrow Summarize

$\square \square \square \square \square \square \square \square \square$ $\square \square \square \square \square \square \square \square \square$ $\square \square \square \square \square \square \square$

Derive: Crucial Design Choice

- don't just draw what you're given!
- decide what the right thing to show is
- create it with a series of transformations from the original dataset
- draw that
- one of the four major strategies for handling complexity

Targets

Θ All Data

Θ Attributes

Θ Network Data
\rightarrow Topology

Θ Spatial Data
\rightarrow Shape

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I/= |))
\rightarrow Shape
$+\quad \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

Manipulate

Facet
Θ Juxtapose

Θ Select

Θ Navigate
$\because \because>$
Θ Superimpose

Reduce

Θ Filter

Θ Aggregate

Θ Embed

How to encode: Arrange space, map channels

Encode

Definitions: Marks and channels

- marks
Θ Points
Θ Lines
\rightarrow Areas
- geometric primitives
- channels
- control appearance of marks
Shape
Θ Tilt
- 米
$1 \square$

Θ Size
\rightarrow Length
- \qquad
\rightarrow Area
- \square
\rightarrow Volume

Encoding visually with marks and channels

- analyze idiom structure
-as combination of marks and channels

1:
vertical position

2 :
vertical position horizontal position

$3:$
vertical position horizontal position color hue
mark: point mark: point

4: vertical position
horizontal position color hue size (area)
mark: point

Channels

Channels: Matching Types

Θ Magnitude Channels: Ordered Attributes

Position on common scale	$\stackrel{\square}{\longmapsto}$
Position on unaligned scale	$\stackrel{\bullet}{\longmapsto}$
Length (1D size)	
Tilt/angle	$1 /$
Area (2D size)	- ■ \square
Depth (3D position)	$\longmapsto \bullet \longmapsto \bullet$
Color luminance	
Color saturation	
Curvature	())
Volume (3D size)	

Θ Identity Channels: Categorical Attributes

- expressiveness principle -match channel and data characteristics

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes

Position on common scale	$\longmapsto-\longrightarrow$
Position on unaligned scale	$\stackrel{-}{\longmapsto}$
Length (1D size)	- - -
Tilt/angle	$1 / 2$
Area (2D size)	- ■
Depth (3D position)	$\longmapsto \bullet \longmapsto \bullet$
Color luminance	
Color saturation	
Curvature	$1)$)
Volume (3D size)	-

Θ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

Shape

- expressiveness principle
- match channel and data characteristics
- effectiveness principle
- encode most important attributes with highest ranked channels

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I / _ \|))
\rightarrow Shape
$+\quad \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

How to handle complexity: 3 more strategies $+I$ previous

\qquad
Θ Filter

Θ Aggregate

\rightarrow Derive

Θ Select

Θ Partition

Θ Navigate

Θ Superimpose

Θ Embed

- change over time
- most obvious \& flexible of the 4 strategies

How to handle complexity: 3 more strategies

+ I previous

\rightarrow Derive

Θ Aggregate

Θ Embed

- facet data across multiple views

Idiom: Linked highlighting

System: EDV

- see how regions contiguous in one view are distributed within another
- powerful and pervasive interaction idiom
- encoding: different
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237-246. IOS Press, 1995.]

Idiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared - bidirectional linking
- differences
- viewpoint
- (size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.]

Idiom: Small multiples

System: Cerebral

- encoding: same
- data: none shared
- different attributes for node colors
-(same network layout)
- navigation: shared

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) I4:6 (2008), I253-I 260.$]$

Coordinate views: Design choice interaction

		Data		
		All	Subset	None
	Same	Redundant	Overview/ Detail	Small Multiples
	Different	Multiform	Multiform, Overview/ Detail	No Linkage

- why juxtapose views?
-benefits: eyes vs memory
- lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
- costs: display area, 2 views side by side each have only half the area of one view

How to handle complexity: 3 more strategies

+ I previous

- reduce what is shown within single view

Reduce items and attributes

- reduce/increase: inverses
- filter
- pro: straightforward and intuitive
- to understand and compute
- con: out of sight, out of mind
- aggregation
- pro: inform about whole set
- con: difficult to avoid losing signal
- not mutually exclusive
- combine filter, aggregate
- combine reduce, facet, change, derive
Θ Filter
\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

Θ Filter

Θ Aggregate

Θ Embed

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
-5 quant attribs
- median: central line
- lower and upper quartile: boxes
- lower upper fences: whiskers
- values beyond which items are outliers

- outliers beyond fence cutoffs explicitly shown
[40 years of boxplots.Wickham and Stryjewski. 20I 2. had.co.nz]

Idiom: Dimensionality reduction for documents

- attribute aggregation
- derive low-dimensional target space from high-dimensional measured space

Task 2

Task 3

Out
\rightarrow Labels for clusters

What?	Why?
Θ In Scatterplot	Θ Produce
Θ In Clusters \& points	Θ Annotate
Θ Out Labels for clusters	

A quick taste of my own work!

Technique-driven: Graph drawing

TopoLayout
SPF
Grouse
GrouseFlocks
TugGraph

Evaluation: Graph drawing

Stretch and squish navigation

Technique-driven:

Stephen Ingram

Glimmer

Glint

DimStiller

QSNE

Evaluation: Dimensionality reduction

Melanie Tory

Points vs landscapes for dimensionally reduced data

Melanie Tory
Michael Sedlmair (UVic)

Problem-driven: Genomics

Hanspeter Pfister
Miriah Meyer

(Harvard)

Cerebral

Problem-driven: Genomics, fisheries

Problem-driven: Many domains

Diane Tang
Heidi Lam

(Google)

SessionViewer: web log analysis

LiveRAC: systems time-series

Evaluation: Focus+Context

Ron Rensink

Heidi Lam

Lam

(UBC)

Distortion impact on search/memory

Robert Kincaid (Agilent)

Separate vs integrated views

Journalism

Johanna Fulda (Sud. Zeitung)

Jonathan Stray
(Assoc Press)

E

TimeLineCurator

Theoretical foundations

- Visual Encoding Pitfalls	- Strategy Pitfalls
- Unjustified Visual Encoding	- What I Did Over My Summer
- Hammer In Search Of Nail	- Least Publishable Unit
- 2D Good, 3D Better	- Dense As Plutonium
- Color Cacophony	- Bad Slice and Dice
- Rainbows Just Like In The Sky	

Papers Process \& Pitfalls

Design Study Methodology

Michael Sedlmair

Matt Brehmer

Abstract Tasks

More Information

- this talk
http://www.cs.ubc.ca/~tmm/talks.htm|\#vadl6gi
- book page (including tutorial lecture slides) http://www.cs.ubc.ca/~tmm/vadbook
- 20\% promo code for book+ebook combo: HVNI7
- http://www.crcpress.com/product/isbn/978I466508910
-illustrations: Eamonn Maguire
- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis

