

## Visualization Analysis \& Design Full-Day Tutorial <br> Tamara Munzner University of British Columbia 

Why use an external representation
Computer-based visualization systems provid yisual representations y dataset

- external representation: replace cognition with perception


What resource limitations are we faced with?
Vis designers must take into accoont three very different kinds of resource limitations:
those of computers, of humans, and of displays.


Visulization Analysis Framework Introduction: Definitions - Analysis: What, Why

- Marks and Channels

Session $210: 30$ am-12:00pm
Spatial Layout
Arrange Tables
-Arrange Spatia Data


## Computer-based visualization systems provid visual designed to help people carry out tasks more eneravie

human visual system is high-bandwidth channel to brain

- subview possibibe due to background processing significant procesesing occurrs in parallel and pre-attentively
- sound: lower bandwidth and different semantics
-overview not supported
- touch/haptics: impoverished record/replay capacity
- only very low-bandwidth communication thus far

Why analyze?

- imposes structure on huge design space
systalc to helicicaly you think
sout choices
- analyzing existing as stepping stone
to designing new to designing new
-most possibilities Particular task/data combination


Why is validation difficult?

- different ways to get it wrong at each level

Defining visualization (vis)
Computer-based visualization systems provide visual representations of datasets Why?...
solution: use methods from different fields at each level

don't need vis when fully automatic solution exists and is trusted

- don't know exactly what questions to ask in advance
- possibilities
-stepping stone to better understanding of requirements before developing models
help developers of automatic solution refine/debuu, determine parameters
-help end users of automatic solutions verify, build trust

Computer-based visualization systems provide visual enep
designed to help people carry ou tasks nor |effectively

- tasks serve as constraint on design (as does data)
-idioms do not serve all tasks equally!
- most possibilities ineffective
-increases chance of finding good solutions if you understand full space of possibilities
what counts as effective?

Outline
Session $18: 30-10.00 a m$
Visualization Analysis - Introduction: Deffinitions -Analysis: What, Why, Ho

Session $210: 30 \mathrm{am}-12: 00 \mathrm{pm}$

- Apatial Layout
-Arrange Spatial Data
http:/lwww.c.s.ubcca/^tmm/talks.hemittrad |6act idelines and Example -Reduce: Filter.Aggregate
-Rules of Thumb -Q\&A
Why have a human in the loop?
Computer-basedvicunlization systems provide visual representations of datasets
designed to hel people arry yout tasks more effectively. Visualization is suitable when there is a need to augment human capabilities
need vis when fully automatic
thew kinds of analysis

Session 3 1:00-2:30pm
Color \& Interaction - Map Color

- Manipulate: Change, Select, Navigate -Facet.Juxtapose, Partition, Superimpos
ion $43: 00-4.30 \mathrm{pm}$
elines and
Examples. @tan Why? Why?


|  | Channels: Rankings | Channels: Expressiveness types and effectiveness rankings | mental Theory <br> Steven's Psychophysical Power Law: $\mathrm{S}=\mathrm{IN}^{\mathrm{N}}$ |
| :---: | :---: | :---: | :---: |
| Accuracy:Vis experiments | Discriminability: How many usable steps? <br> - must be sufficient for number of attribute levels to show -linewidth: few bins | Separability vs. Integrality | Popout <br> - find the red dot -how long does it take? <br> - parallel processing on many individual channels <br> -speed independent of distractor count - speed depends on channel and amount of difference from distractors <br> - serial search for (almost all) combinations - speed depends on number of distractors |
| Popout <br> - many channels: tilt, size, shape, proximity, shadow direction, ... <br> - but not all! parallel line pairs do not pop out from tilted pairs |  | Relative vs. absolute judgements <br> - perceptual system mostly operates with relative judgements, not absolute -that's why accuracy increases with common frame/scale and alignment -Weber's Law: ratio of increment to background is constant <br> - filled rectangles differ in length by $1: 9$, difficult judgement <br> - white rectangles differ in length by $1: 2$, easy judgement | Relative luminance judgements <br> - perception of luminance is contextual based on contrast with surroundings |
| Relative color judgements <br> - color constancy across broad range of illumination conditi | Further reading <br> - Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014. <br> -Chap 5: Marks and Channels <br> - On the Theory of Scales of Measurement. Stevens. Science 103:2684 (1946), 677-680. <br> - Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects. Stevens.Wiley, 1975. <br> - Graphical Perception:Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 53I-554. <br> - Perception in Vision. Healey. http://www.csc.ncsu.edu/faculty/healey/PP <br> - Visual Thinking for Design. Ware. Morgan Kaufmann, 2008. <br> - Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann /Academic Press, 2004. | Outline |  |




Arrange networks and trees
Idiom：force－directed placement
visual encoding
－link connection marks，node point marks
considerations
－spatial position：no meaning directly encoded
－proximity semantics？
－sometimes meaningul
－sometimes arbirary，artíact of hayut alaorithm －sometimes arbitrary，artifact of hayout algorit

- tension with lionh
－ －tension with lenght
－long sdges norevesally saliencr than short
－taks
－explore topology；locate paths，clusters
scalability
- nodeledge density $\mathrm{E}<4 \mathrm{~N}$


（1）Enclosure


Idiom：sfdp（multi－level force－directed placement）
 －scalability
－nodes，edges：IK－10K －hairball problem eventually hits
Idiom：radial node－link tree

| Connection vs．adjacency comparison |
| :--- | :--- | :--- |
| • adjacency matrix strengths |
| －predictability scalability，supports reordering |
| －some topology tasks trainable |
| －node－link diagram strengths |
| －topology understanding，path tracing |
| －intuitive，no training needed |

Idiom：treemap
• data
$\quad$－tree
－I quant attrib at leaf nodes
• encoding
$\quad$－area containment marks for hierarchical structur
－rectilinear orientation
－size encodes quant atrib
－tasks

- data
－tree
－encoding
－link connection marks
－point node marks
$\stackrel{- \text { radia axis orientation }}{- \text { angular proximity siblings }}$
－angular proximity： ： diblings
distance from center：depth in tree
－tasks
－understanding topology，following paths
－scalability

Further reading
Visualization Analysis and Design．Munzner．AK Peters Visualization Series，CRC Press， 2014．${ }^{-C h a p ~ P: A r r a n g e ~ N e t w o r k s ~ a n d ~ T r e e s ~}$
Visual Analysis of Large Graphs：State－of－the－Art and Future Research Challenges．von
Landesberger et al．Computer Grahicf Forction Landesberger et al．Computer Graphics Forum 30：6（2011），1719－1749． －Simple Algorithms for Network Visualization：A Tutorial．McGuffin．Tsinghua Science and
Technology（Special Issue on Visualization and Computer Graphics）I7：4（2012）， $383-398$ ． Drawing on Physical Analogies．Brandes．In Drawing Graphs：Methods and Models，LNCS Trawirial 20255，editited by M．Kaufmann and D．Wagner，LNCS Tutorial，2025，pp． $71-86$ ．
Springer－Verlag，2001．
http：／／www．treevis．net Treevis．net：A Tree Visualization Reference．Schulz．IEEE Computer Graphics and Applications 31：6（2011），I I－15．
－Perceptual Guidelines for Creating Rectangular Treemapss．Kong．Heer，and Agrawala．IEEE
Trans．V．Visualization and Computer Graphics（Proc．InfoV Vis） $16: 6$（2010）， $990-998$.

Color：Luminance，saturation，hue
-3 channels
－identity for categorical
－magnitude for ordered

RGB：poor for encoding
－HSL：better，but beware Coners of the RGB


$\square \square \square \square \square \square$ ■■ロロாロ

Idiom：adjacency matrix view
－transform into same data／encoding as heatmap
－derived data：table from network
1 quant attrib
－weighted edge between nodes
-2 categ attribs：node list $\times 2$
visual encoding
－cell shows presence／absence of edge
scalability
IK nodes，IM edges
 －tasks
ery attribute at leaf nodes －scalability
－IM leaf nodes

## Outline

| Session $18: 30-10.000 \mathrm{am}$ Visualization Analysis Framework | Session $31: 00 \cdot 2: 30 \mathrm{pm}$ Color \＆Interation |
| :---: | :---: |
| ， |  |
| －Introduction：Definitions | －Map Color |
| －Analysis：What，Why，How | －Manipulate：Change，Select，Navigate |
| －Marks and Channels | －Face：．Juxtapose，Partition，Superimpose |
| －Session 2 10：30am－12：00pm Spatial Layout | －Session 4 3：00－4：30pm Guidelines and Examples |
| －Arrange Tables | －Reduce：Filter，Agrregate |
| －Arrange Spatial Data | －Rules of Thumb |
| －Arrange Networks and Trees | －Q8A |
|  | ＠tamaramunzner |

## Spectral sensitivity



## Link marks：Connection and containment

- marks as links (vs. nodes)
－common case in network drawing
ex：all node－link diagram
－emphasizes topology，path tracing
－networks and trees
－ 2 D case：containment
－ ex al treemap variants
－emphasizes attribute values at leaves（size coding）
only trees
（®）Connection © Containment
 Nole


Idiom design choices：Encode


Opponent color and color deficiency
－perceptual processing before optic nerve －one achromatic luminance channel $L$
－edge detection through channel L
－edge detection through luminance co


ISeriousy Colorfu：Advanced Color r Priciples \＆
Stone．Tobleau Customer Conference 20 14.$]$


| Ordered color: Rainbow is poo |  | Map other channels |  |
| :---: | :---: | :---: | :---: |
|  |  |  | Sequential ordered line mark or arrow glyph |
| Further reading <br> - Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014 <br> -Chap 10: Map Color and Other Channels <br> - ColorBrewer, Brewer. -http://www.colorbrewer2.org <br> - Color In Information Display. Stone. IEEE Vis Course Notes, 2006. -http://www.stonesc.com/Vis06 <br> - A Field Guide to Digital Color. Stone.AK Peters, 2003. <br> - Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14-17. <br> - Visual Thinking for Design. Ware. Morgan Kaufmann, 2008. <br> - Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004. <br> - https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html | Outline |  | How to handle complexity: I previous strategy +3 more |
|  | Change over time <br> - change any of the other choices -encoding itself <br> -parameters <br> -arrange: rearrange, reorder <br> -aggregation level, what is filtered... <br> -interaction entails change | Idiom: Re-encode <br> System: Tableau <br> made using Tableau, http://tableausoftware.com | Idiom: Reorder <br> - data: tables with many attributes <br> - task: compare rankings <br> 2013) 19:12 (2013), 2277-2286.] |
| Idiom: Realign <br> - stacked bars -easy to compare - first segment - total bar <br> - align to different segment -supports flexible comparison <br> System: LineUp $\qquad$ | Idiom: Animated transitions <br> - smooth transition from one state to another -alternative to jump cuts -support for item tracking when amount of change is limited <br> - example: multilevel matrix views <br> - example: animated transitions in statistical data graphics - https://vimeo.com/19278444 <br> [Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227-232, 2003.] | Select and highlight <br> - selection: basic operation for most interaction <br> - design choices <br> -how many selection types? <br> - click vs hover: heavyweight, lightweight <br> - primary vs secondary: semantics (eg source/target) <br> - highlight: change visual encoding for selection targets -color <br> - limitation: existing color coding hidden <br> -other channels (eg motion) <br> -add explicit connection marks between items | Navigate: Changing item visibility |

Idiom：Semantic zoominc
System：LiveRAC
－colored box
－sparkline
－simple line chart
－full chart：axes and tickmark



## Partition into views

－how to divide data between views $\Theta$ Partition into Side－by－Side Views
－split into regions by attributes
－encodes association between items
－order of spits has major implications
for what patterns are visib
no strict dividing
－view：big／detailed
－contiguous region in which visually
encoded data is shown on the display
－glyph：smalliconic
object with internal structure that arises
from multiple marks

$\therefore{ }^{2000}$
multiple marks

Navigate：Reducing attributes
－continuation of camera
metaphor －slice
－show only items matching specific xis given attribute：slicing plaz －cut －show only items on far slide of por project －change mathematics of image creation －orthographic －mansective
Juxtapose and coordinate view
$\rightarrow$ Share Encoding：Same／Different
$\rightarrow$ Linked Highighting
｜in｜
$\rightarrow$ Share Data：All／subset／None
．．．$\cdot$ I．।lı
$\rightarrow$ Share Navigation
＜．．．．＂〉〉〈ılı〉

－why juxtapose views？
－benefits：eyes vs memory
－lower cognitive load to

| － $\begin{array}{c}\text { lower cognitive load to } \\ \text { single changing view }\end{array}$ |
| :---: |

Partitioning：List alignment single bar chart with grouped bars ${ }_{\text {－}}^{\text {－}}$－completex glyph within ead complex glyph within each region showing all
ages

small－multiple bar charts －split by age into regions －compare：easy within age，harder
across states

P＝$=-2$ ローローーー
事———————


Further reading
－Visualization Ana
CRC Press 2014
CRC Press， 2014.
Animated Transitions in Statistical Data Graphics．Heer and Robertson．IEEE Trans． on Visualization and Computer Graphics（Proc．InfoVis07）13：6（2007）， $1240-$ 1247.

Selection： 524,288 Ways to Say＂This is Interesting＂．Wills．Proc．IEEE Symp Information Visualization（InfoVis），pp．54－61， 1996.
Smooth and efficient zooming and panning．van Wijk
Information Visualization（lnfoVis），pp．I5－22，2003．
Starting Simple－adding value to static visualisation through simple interaction．Dix
Idiom：Linked highlighting
－see how regions
contiguous in one view
are distributed within
another
－powerfil and
pervasive interaction
idiom
－encoding：different
－multiform
－data：all shared

Outline
－Session 1 1：30－10：00am Visualization Analysis Framework －Introduction：Definitions －Analysis：What，Why H
－Marks and Channels
Session 2 10：30am－12：00pm
Spatial Layout
－Arrange Tables
－Arrange Spatial Data
Arrange Networks and Tree
－Reduce：Filter，Agregate

－Rules of
－QAA

System：Improvise


## Partitioning：Recursive subdivision

－split by neighborhood
－then by type
－then time
－years as rows
－months as columns
－color by price
－neighborhood pattern
－where it＇s expensive
－where you pay much
for detached type


Partitioning．Recursive subdivision
switch order of splits
－type then neighborhood
switch color
－by price variation
－type patterns
within specific type，which
neighborhoods
inconsistent


|  | Partitioning: Recursive subdivision <br> - size regions by sale counts -not uniformly <br> - result: treemap | Superimpose layers <br> - layer: set of objects spread out over region -each set is visually distinguishable group -extent: whole view <br> $\Theta$ Superimpose Layers <br> - design choices <br> -how many layers, how to distinguish? $\square$ $\rightarrow$ $\qquad$ <br> - encode with different, nonoverlapping channels - two layers achieveable, three with careful design -small static set, or dynamic from many possible? | Static visual layering <br> - foreground layer: roads -hue, size distinguishing main from minor -high luminance contrast from background <br> - background layer: regions -desaturated colors for water, parks, land areas <br> - user can selectively focus attention <br> - "get it right in black and white" -check luminance contrast with greyscale view <br> [Get it right in black and white. Stone. 2010 http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white] |
| :---: | :---: | :---: | :---: |
| Superimposing limits <br> - few layers, but many lines -up to a few dozen -but not hundreds <br> - superimpose vs juxtapose: empirical study -superimposed for local, multiple for global -tasks <br> - local: maximum, global: slope, discrimination -same screen space for all multiples vs single superimposed $\qquad$ $\square$ | Dynamic visual layering <br> System: Cerebral <br> - interactive, from selection <br> -lightweight: click -very lightweight: hover <br> - ex: I-hop neighbors <br> Cerebral: a Cytoscape plugin for layout of and localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23:8 (2007), 1040-1042.] | Further reading <br> Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014. <br> -Chap 12: Facet Into Multiple Views <br> A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I. <br> A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010. <br> Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Plumlee and Ware. ACM Trans. on ComputerHuman Interaction (ToCHI) I3:2 (2006), I79-209 <br> Exploring the Design Space of Composite Visualization. Javed and Elmqvist. Proc. Pacific Visualization Symp. (Pacific Vis), pp. I-9, 2012. - Visual Comparison (201 1), 289-309. <br> Guidelines for Using Mutipl Vis information Visualizations. Bald Interfaces (AVI), Pp. I 10-1 19, 2000. <br> 2010), 192-204, 2010. <br> 24I. Springer-Verlag, 2008 <br> - Glyph-based Visulization: Foundations, Design Guidelines, Techniques and Applications. Borgo, Kehrer, Chung, Maguire, Laramee, Haus Clyph-based Visualization: Foundations, Design Guidelines, Techniques and Application Ward, and Chen. In Eurographics State of the Art Reports, pp. 39-63, 2013. |  |
|  | Idiom: dynamic filtering <br> System: FilmFinder <br> - item filtering <br> - browse through tightly coupled interaction -alternative to queries that might return far too many or too few <br> [Visual information seeking:Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman. Proc.ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313-317, 1994.] | Idiom: DOSFA <br> Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration Of High Dimensional Datasets. Yang, Peng,Ward, and. Rundensteiner. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I05-I I 2, 2003.] | Idiom: histogram <br> - static item aggregation <br> - task: find distribution <br> - data: table <br> - derived data <br> -new table: keys are bins, values are counts <br> Weight Class (lbs) <br> - bin size crucial <br> -pattern can change dramatically depending on discretization -opportunity for interaction: control bin size on the fly |
| Continuous scatterplot <br> - static item aggregation <br> - data: table <br> - derived data: table <br> - key attribs $x, y$ for pixels <br> - quant attrib: overplot density <br> - dense space-filling 2D matrix <br> - color: sequential categorical hue + ordered luminance | - augment widgets for filtering to show information scent -cues to show whether value in drilling down further vs looking elsewhere <br> - concise, in part of screen normally considered control panel <br> [Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE Trans. | - static item aggregation <br> - task: find distribution <br> - data: table <br> - derived data <br> -5 quant attribs <br> - median: central line <br> - lower and upper quartile: boxes <br> - lower upper fences: whiskers <br> - values beyond which items are outiers <br> -outliers beyond fence cutoffs explicitly shown | Idiom: Hierarchical parallel coordinates <br> - dynamic item aggregation <br> - derived data: hierarchical clustering <br> - encoding: <br> -cluster band with variable transparency, line at mean, width by min/max values -color by proximity in hierarchy |

## Spatial aggregation

- MAUP: Modifiable Areal Unit Problem



## 



No unjustified 3D example:Time-series data - extruded curves: detailed comparisons impossible


Dimensionality reduction

- attribute aggregation
-derive low-dimensional target space from high-dimensional measured space -use when you can't directly measure what you care about
- true dimensionality of dataset coniectured to be smaller than
- true dimensionality of dataset conjiectured to be smaller than dimensionality of
measuruments
$\underset{-}{ }{ }_{-}^{\text {measurements }}$ atent factors, hid



## Rules of Thumb

- No unjustified 3D
-Power of the plane
- Occlusion hides inform
-Perspective distortion dangers
-Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion

Overview first, zoom and filter, details on demand

- Responsiveness is required
- Function first, form next

Perspective distortion loses information
perspective distortion
-interferes with all size channel encodings
-power of the plane is lost!
-


No unjustified 3D example:Transform for new data abstraction

- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

[CCuster and Calendar based Visulization ofTime Series Data. van Wijk and van Selow, Proc. IffoVis 99.]

Idiom: Dimensionality reduction for documents


Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series,
CRC Press CRC Press, 2014.
-Chap 13: Reduce Items and Atrributes
- Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439-454.
- A Review of OVerview + Detail, Zooming, and Focus + Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys $41: 1$ (2008), I-31. - A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and
Claypool, 2010.


No unjustified 3D: Danger of depth
No unjustified 3D: Danger of depth

- we don't really live in 3D: we see in 2.05D
No unjustified 3D: Power of the plane
- high-ranked spatial position Steven's Psychophysical Power Law $: s=\left.\right|^{w}$
- high-ranked spatial position
channels: planar spatial positio
channels: planar spatial position
- not depth!
-not depth!
() Masitude Channels: ordered Atributes
Postion on common sale

$\begin{array}{lll}\text { Postion on unaligneds sale } & -\longrightarrow \\ \text { Length (10 size) } & -\square-\longrightarrow\end{array}$
Titlangle
Itangle
Deph (30 osostion)
3D vs 2D bar charts
- 3D bars

-acquire more info on image plane quickly from eye movements -acquire more info for depth slower, from head/body motion


Tilted text isn't legible

- text legibility
-far worse when tilted from image plane
further reading
[Exploring ond Reducing the Effects of
Orientation on Text Readobility involumetric
Displys.
Grossman et $a$ I. CHI 2007]

-benefits outweigh costs
when task is shape
perception for 3D spatial
percep
data
-intera
-interactive navigation supports
synthesis across many synthesis across many
viewpoints viewpoints


Justified 3D: Economic growth curve

Justified 3D: Economic growth curve


.

| Why not animation? |
| :--- | :--- | :--- |
| - disparate frames and |
| regions: comparison |
| dificult |
| -vs contiguous frames |
| -vs small region |
| -vs coherent motion of group |

## Responsiveness is required

three major categories
-0.1 seconds: perceptual processing
10 seconds: brief tasks
importance of visual feedback

No unjustified 2D

- consider wheth spatial layout -especially if reading text is central to task! -arranging as network means lower information
density and harder label lookup compared to te density and harder label lookup compared to tex
lists
benefits outweigh costs when topological
structure/context important for task structure/context important for task
-be especially careful for search results, doc -be especially carefulf
collections, ontologies


## Change blindness

- if attention is directed elsewhere, even drastic changes not noticeable -door experiment
change blindness demos
-mask in between images

Eyes beat memory
principle: external cognition vs. internal memory
easy to compare by moving eyes between side-by-side view
-harder to compare visible item to memory of what you saw

- implications for animation
-great for choreographed storytelling
-great for transitions between two states
-poor for many states with changes everywhere - consider small multiples instead

| literal <br> animation | abstract <br> show time with time |
| :--- | ---: |
| small multiples |  |

## Resolution beats immersion

- immersion typically not helpful for abstract data
- do not need sense of presence or stereoscopic 3D
- resolution much more importan
-pixels are the scarcest resource
-desktop also better for workflow integration
- virtual reality for abstract data very difficult to justify



## Function first, form next $\quad$ Further reading

start with focus on functionality
-straightforward to improve aesthetics later on, as refinement
-if no expertise in-house, find good graphic designer to work with

- dangerous to start with aesthetics
-usually impossible to add function retroactively
Visulization Analysis and Design. Tamara Munzner. CRC Press, 2014 -Chap 6: Rules of Thumb

Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules. Jeff Johnson. Morgan Kaufmann, 2010.
-Chap 12:We Have Time Requirements

Eyes beat memory example: Cerebral

- small multiples: one graph instance per experimental condition -same spatial layout


Overview first, zoom and filter, details on demand


## - influential mantra from Shneiderman

[The Eyes Have lt:A Task by Data Type Taxonomy for Information Visulizations.
Shneiderman. Proc. 1 IEEEVisual Languages, pp. 336-343, 1996 .]

- overview = summary
-microcosm of full vis

: \# ! ! :

More Information

- this talk
hetpi/l/wwn.cs.ubc.ca/-tmm/talks.htmiltvad I act
- book page (including tutorial lecture slides) $-20 \%$ promo code for book+ebo $20 \%$ promo code for book+ebook combo:
HVNIT $-h$ tep://www.crcpress.com/product/isbn/978 1466508910 -illustrations: Eamonn Maguire
- papers, videos, software, talks, courses htep://www.cs.ubc.calgrouplinfovis
htep://www.cs.ubccacal cal roupm


