Half-Day Tutorial

Visualization Analysis \& Design

Tamara Munzner

Department of Computer Science University of British Columbia

Outline

- Session l 2:00-3:40pm
-Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate
-Embed: Focus+Context

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

Computer-based xisualization systems provide visual representations o datasets designed to hel people arry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- don't need vis when fully automatic solution exists and is trusted
- many analysis problems ill-specified
- don't know exactly what questions to ask in advance
- possibilities
- long-term use for end users (e.g. exploratory analysis of scientific data)
- presentation of known results
- stepping stone to better understanding of requirements before developing models
- help developers of automatic solution refine/debug, determine parameters
-help end users of automatic solutions verify, build trust

Why use an external representation?

Computer-based visualization systems provid visual representations f datasets designed to help people carry out tasks more efrectively.

- external representation: replace cognition with perception

Why represent all the data?

Computer-based visualization systems provide visua representations of datasets designed to help people carry out tasks more effectivery.

- summaries lose information, details matter
- confirm expected and find unexpected patterns
- assess validity of statistical model

Anscombe's Quartet

Identical statistics	
x mean	9
x variance	10
y mean	8
y variance	4
x/y correlation	1

Analysis framework: Four levels, three questions

- domain situation
- abstraction
[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG I5(6):92I-928, 2009 (Proc. InfoVis 2009).]
- what is shown? data abstraction
- often don't just draw what you're given: transform to new form
- why is the user looking at it? task abstraction
- idiom

- visual encoding idiom: how to draw
- interaction idiom: how to manipulate
[A Multi-Level Typology of Abstract Visualization Tasks
- algorithm
- efficient computation

Why is validation difficult?

- different ways to get it wrong at each level

```
Domain situation
    You misunderstood their needs
Data/task abstraction
    You're showing them the wrong thing
    Visual encoding/interaction idiom
    The way you show it doesn't work
    m
    Your code is too slow
```


Why is validation difficult?

- solution: use methods from different fields at each level

anthropology/ ethnography	1 Domain situation Observe target users using existing tools	problem-driven work
	Data/task abstraction	
design	Visual encoding/interaction idiom Justify design with respect to alternatives	+
computer science	W Algorithm Measure system time/memory Analyze computational complexity	technique-driven work
cognitive	Analyze results qualitatively	
psychology	Measure human time with lab experiment (lab study)	
anthropology/	Observe target users after deployment (field study)	
ethnography	Measure adoption	

What?

Why?

How?

What?

Three major datatypes

Θ Dataset Types

Attribute types

Θ Attribute Types
\rightarrow Categorical
$+\bullet ■$
\rightarrow Ordered

$$
\rightarrow \text { Ordinal } \quad \rightarrow \text { Quantitative }
$$

Θ Ordering Direction
\rightarrow Sequential

\rightarrow Diverging

\rightarrow Cyclic
\square

Why?

What?

How?

- \{action, target\} pairs
- discover distribution
- compare trends
- locate outliers
- browse topology

Analyze
\rightarrow Consume

\rightarrow Produce

Θ Search

	Target known	Target unknown
Location known	\bullet - Lookup	- \odot Browse
Location unknown	<.O.> Locate	< ${ }^{\text {O-P.> Explore }}$

\rightarrow Query
\rightarrow Identify

\rightarrow Summarize

\leftrightarrow All Data

\leftrightarrow

\rightarrow Extremes illı.
Θ Network Data
\rightarrow Topology

\rightarrow Paths
Θ Spatial Data
\rightarrow Shape

High-level actions:Analyze

- consume
-discover vs present
- classic split
- aka explore vs explain
-enjoy
- newcomer
- aka casual, social
- produce
-annotate, record
- derive
- crucial design choice
Θ Analyze
\rightarrow Consume
\rightarrow Discover

\rightarrow Produce
\rightarrow Annotate

$$
\rightarrow \text { Present } \quad \rightarrow \text { Enjoy }
$$

$$
\rightarrow \text { Record } \quad \rightarrow \text { Derive }
$$

Derive

- don't just draw what you're given!
- decide what the right thing to show is
- create it with a series of transformations from the original dataset
-draw that
- one of the four major strategies for handling complexity

Analysis example: Derive one attribute

- Strahler number

- centrality metric for trees/networks
- derived quantitative attribute
- draw top 5 K of 500 K for good skeleton
[Using Strahler numbers for real time visual exploration of huge graphs. Auber. Proc. Intl. Conf. Computer Vision and Graphics, pp. 56-69, 2002.]

Actions: Search, query

- what does user know?
- target, location
- how much of the data matters?
- one, some, all
Θ Search

	Target known	Target unknown
Location known	- . . Lookup	\cdots Browse
Location unknown	< ${ }^{\circ}$ - > Locate	- . ${ }^{\circ}$-> Explore

\leftrightarrow Query

Why:Targets

Θ All Data

\leftrightarrow Attributes

Θ Network Data
\rightarrow Topology

Θ Spatial Data
\rightarrow Shape

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...
-■ $\quad 1 /=$ ())
\rightarrow Shape
$+\quad \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

Manipulate

\qquad
Θ Juxtapose

Θ Select

Θ Navigate
$\because \because>$
Θ Superimpose

Reduce

Θ Filter

Θ Aggregate

Θ Embed

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap I:What's Vis, and Why Do It?
- Chap 2:What: Data Abstraction
- Chap 3:Why:Task Abstraction
- A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) I9:I2 (2013), 2376-2385.
- Low-Level Components of Analytic Activity in Information Visualization. Amar, Eagan, and Stasko. Proc. IEEE InfoVis 2005, p III-II7.
- A taxonomy of tools that support the fluent and flexible use of visualizations. Heer and Shneiderman. Communications of the ACM 55:4 (20I2), 45-54.
- Rethinking Visualization:A High-Level Taxonomy. Tory and Möller. Proc. IEEE InfoVis 2004, p I 5 I158.
- Visualization of Time-Oriented Data. Aigner, Miksch, Schumann, and Tominski. Springer, 20II.

Outline

- Session l 2:00-3:40pm
- Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate
-Embed: Focus+Context

How?

Manipulate
Θ Change

\qquad
Θ Select

Θ Navigate

Facet

Reduce

Θ Filter

Θ Partition

Θ Superimpose

Θ Embed

Visual encoding

- analyze idiom structure

Definitions: Marks and channels

- marks
- geometric primitives
- channels
- control appearance of marks
- can redundantly code with multiple channels
- interactions
- point marks only convey position; no area constraints
- can be size and shape coded
- line marks convey position and length
Θ Points
Θ Lines

Position
\rightarrow Horizontal
\rightarrow Vertical
I
\rightarrow Both
$\bullet \cdot$
Θ Color

Θ Shape

Θ Size

Visual encoding

- analyze idiom structure
- as combination of marks and channels

Channels

Channels: Matching Types

Θ Magnitude Channels: Ordered Attributes

Position on common scale	$\stackrel{\square}{\longmapsto}$
Position on unaligned scale	$\stackrel{\bullet}{\longmapsto}$
Length (1D size)	
Tilt/angle	$1 /$
Area (2D size)	- ■ \square
Depth (3D position)	$\longmapsto \bullet \longmapsto \bullet$
Color luminance	
Color saturation	
Curvature	())
Volume (3D size)	

Θ Identity Channels: Categorical Attributes

- expressiveness principle -match channel and data characteristics

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes

Position on common scale	$\longmapsto-$
Position on unaligned scale	$\stackrel{-}{\longmapsto}$
Length (1D size)	- -
Tilt/angle	$1 / 2$
Area (2D size)	- \quad
Depth (3D position)	$\longmapsto \bullet$ -
Color luminance	
Color saturation	
Curvature	$1)$)
Volume (3D size)	- 1

Θ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

Shape

- expressiveness principle
- match channel and data characteristics
- effectiveness principle
- encode most important attributes with highest ranked channels

Channels: Expressiveness types and effectiveness rankings

- expressiveness principle
- match channel and data characteristics
- effectiveness principle
- encode most important attributes with highest ranked channels
- spatial position ranks high for both

Accuracy: Fundamental Theory

Steven's Psychophysical Power Law: $\mathrm{S}=\mathrm{I}^{\mathrm{N}}$

Accuracy:Vis experiments

Cleveland \& McGill's Results

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203-2 ${ }^{2}$ 2.]

Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
- linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability vs. Integrality

Fully separable

2 groups each

Size

+ Hue (Color)

Some interference

2 groups each

Some/significant interference

3 groups total: integral area

Red

+ Green

Major interference

4 groups total: integral hue

Popout

- find the red dot
-how long does it take?
- parallel processing on many individual channels
- speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
- speed depends on number of distractors

Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Grouping

Marks as Links

Θ Containment
Θ Connection

- - -
- •••

Θ Identity Channels: Categorical Attributes Spatial region

Color hue

Motion

Shape

+ • ■ -

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute -that's why accuracy increases with common frame/scale and alignment -Weber's Law: ratio of increment to background is constant
- filled rectangles differ in length by I:9, difficult judgement
- white rectangles differ in length by $\mathrm{I}: 2$, easy judgement

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 5: Marks and Channels
- On the Theory of Scales of Measurement. Stevens. Science I03:2684 (I946), 677-680.
- Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects. Stevens.Wiley, 1975.
- Graphical Perception:Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 53I-554.
- Perception in Vision. Healey. http://www.csc.ncsu.edu/faculty/healey/PP
- Visual Thinking for Design.Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann /Academic Press, 2004.

Outline

- Session l 2:00-3:40pm
-Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate
-Embed: Focus+Context

How?

Arrange tables

Θ Express Values

Θ Separate, Order, Align Regions
\rightarrow Separate

\rightarrow Order

\rightarrow Align

$$
\rightarrow 1 \text { Key }
$$

List
m 目
$\rightarrow 2$ Keys
Matrix
\#

$\rightarrow 3$ Keys

 Volume
Θ Axis Orientation
\rightarrow Rectilinear

Θ Layout Density
\rightarrow Dense $\quad \rightarrow$ Space-Filling

[^0]
\rightarrow Parallel

\rightarrow Radial

Keys and values

\rightarrow Tables

- key
- independent attribute
- used as unique index to look up items

Attributes (columns)

\rightarrow Multidimensional Table

-0, I, 2, many...Express Values

$\rightarrow 2$ Keys
Matrix

\rightarrow Many Keys Recursive Subdivision

Idiom: scatterplot

- express values
- quantitative attributes
- no keys, only values
- data
- 2 quant attribs
-mark: points
- channels
- horiz + vert position
-tasks

- find trends, outliers, distribution, correlation, clusters
- scalability
- hundreds of items

Some keys: Categorical regions

\rightarrow Order

\rightarrow Align

- regions: contiguous bounded areas distinct from each other
- using space to separate (proximity)
-following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Idiom: bar chart

- one key, one value
- data
- I categ attrib, I quant attrib -mark: lines
- channels

Animal Type

Animal Type

- length to express quant value
- spatial regions: one per mark
- separated horizontally, aligned vertically
- ordered by quant attrib » by label (alphabetical), by length attrib (data-driven)
- task
- compare, lookup values
- scalability
- dozens to hundreds of levels for key attrib

Idiom: stacked bar chart

- one more key
- data
- 2 categ attrib, I quant attrib
-mark: vertical stack of line marks

- glyph: composite object, internal structure from multiple marks
- channels
- length and color hue
- spatial regions: one per glyph
- aligned: full glyph, lowest bar component
- unaligned: other bar components
- task
- part-to-whole relationship
- scalability
- several to one dozen levels for stacked attrib
[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 200 I.]

Idiom: streamgraph

- generalized stacked graph
- emphasizing horizontal continuity
- vs vertical items
- data
- I categ key attrib (artist)
- I ordered key attrib (time)
- I quant value attrib (counts)
- derived data
- geometry: layers, where height encodes counts
- I quant attrib (layer ordering)
- scalability
- hundreds of time keys
- dozens to hundreds of artist keys
- more than stacked bars, since most layers don't extend across whole chart

Idiom: line chart

- one key, one value
- data
- 2 quant attribs
-mark: points
- line connection marks between them
- channels
- aligned lengths to express quant value

- separated and ordered by key attrib into horizontal regions
-task
- find trend
- connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib -bar charts if categorical - line charts if ordered
- do not use line charts for categorical key attribs
- violates expressiveness principle
- implication of trend so strong that it overrides semantics!
-"The more male a person is, the taller he/she is"

Idiom: heatmap

- two keys, one value
- data
- 2 categ attribs (gene, experimental condition)
- I quant attrib (expression levels)
-marks: area
- separate and align in 2D matrix
- indexed by 2 categorical attributes
- channels
- color by quant attrib
- (ordered diverging colormap)
- task
- find clusters, outliers
- scalability
- IM items, 100 s of categ levels, ~ 10 quant attrib levels
Θ Axis Orientation
\rightarrow Rectilinear
\rightarrow Parallel
\rightarrow Radial

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
- rectilinear axes, point mark
- all possible pairs of axes
- scalability
- one dozen attribs
- dozens to hundreds of items
- parallel coordinates

- parallel axes, jagged line representing item
- rectilinear axes, item as point
- axis ordering is major challenge
- scalability
- dozens of attribs

Table

Physics	Dance	Drama
95	70	65
80	60	50
50	90	90
40	95	80
60	80	90

- hundreds of items

Task: Correlation

- scatterplot matrix

- positive correlation
- diagonal low-to-high
-negative correlation
- diagonal high-to-low - uncorrelated

- parallel coordinates

- positive correlation
- parallel line segments
- negative correlation
- all segments cross at halfway point
- uncorrelated
- scattered crossings

Idioms: pie chart, polar area chart

- pie chart
-area marks with angle channel
-accuracy: angle/area much less accurate than line length

- polar area chart
- area marks with length channel
- more direct analog to bar charts

- data
- I categ key attrib, I quant value attrib
- task

- part-to-whole judgements

Idioms: normalized stacked bar chart

- task
- part-to-whole judgements
- normalized stacked bar chart
- stacked bar chart, normalized to full vert height
- single stacked bar equivalent to full pie
- high information density: requires narrow rectangle
- pie chart

- information density: requires large circle

Idiom: glyphmaps

- rectilinear good for linear vs nonlinear trends

Θ Axis Orientation

$$
\begin{gathered}
\rightarrow \text { Parallel } \\
\uparrow \uparrow \uparrow \uparrow
\end{gathered}
$$

Orientation limitations

- rectilinear: scalability wrt \#axes
- 2 axes best
- 3 problematic
-more in afternoon
- 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
-angles lower precision than lengths
-asymmetry between angle and length
- can be exploited!
[Uncovering Strengths and Weaknesses of Radial Visualizations an Empirical Approach. Diehl, Beck and Burch. IEEE TVCG (Proc. InfoVis) I6(6):935-942, 20I0.]

Θ Axis Orientation

\rightarrow Rectilinear

\rightarrow Parallel

\rightarrow Radial

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 7:Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, 1993.
- A Brief History of Data Visualization. Friendly. 2008. http://www.datavis.ca/milestones

Outline

- Session l 2:00-3:40pm
-Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
-Reduce: Filter, Aggregate
-Embed: Focus+Context

Arrange spatial data

Use Given

\rightarrow Geometry
\rightarrow Geographic
\rightarrow Other Derived

\rightarrow Spatial Fields
\rightarrow Scalar Fields（one value per cell）
\rightarrow Isocontours
\rightarrow Direct Volume Rendering
\rightarrow Vector and Tensor Fields（many values per cell）
\rightarrow Flow Glyphs（local）
\rightarrow Geometric（sparse seeds）
\rightarrow Textures（dense seeds）
\rightarrow Features（globally derived）

```
\kappa个个个ス
ККイス\pi
\kappa个个ス个
\kappa「个ス个
```


Idiom: choropleth map

- use given spatial data
- when central task is understanding spatial relationships
- data
- geographic geometry
- table with I quant attribute per region
- encoding

- use given geometry for area mark boundaries
- sequential segmented colormap [more later]

Beware: Population maps trickiness!

PET PEEVE \#208:
GEOGRAPHIC PROFIE MAPS WHICH ARE
BASICALLY JUST POPULATION MAPS

Idiom: topographic map

- data
- geographic geometry
- scalar spatial field
- I quant attribute per grid cell
- derived data
- isoline geometry
- isocontours computed for specific levels of scalar values

Land Information New Zealand Data Service

Idioms: isosurfaces, direct volume rendering

- data
- scalar spatial field
- I quant attribute per grid cell
- task
- shape understanding, spatial relationships
- isosurface
[Interactive Volume Rendering Techniques. Kniss. Master's thesis, University of Utah Computer Science, 2002.]
- derived data: isocontours computed for specific levels of scalar values
- direct volume rendering
- transfer function maps scalar values to color, opacity
- no derived geometry
[Multidimensional Transfer Functions for Volume Rendering. Kniss, Kindlmann, and Hansen. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. I89-2 IO. Elsevier, 2005.]

Vector and tensor fields

- data

- many attribs per cell
- idiom families
- flow glyphs
- purely local
- geometric flow
- derived data from tracing particle trajectories
- sparse set of seed points
- texture flow
- derived data, dense seeds
- feature flow
- global computation to detect features
- encoded with one of methods above

[Comparing 2D vector field visualization methods:A user study. Laidlaw et al. IEEE Trans. Visualization and Computer Graphics (TVCG) I I:I (2005), 59-70.]

[Topology tracking for the visualization of time-dependent two-dimensional flows.Tricoche, Wischgoll, Scheuermann, and Hagen. Computers \& Graphics $26: 2$ (2002), 249-257.]

Vector fields

- empirical study tasks

- finding critical points, identifying their types
- identifying what type of critical point is at a specific location
- predicting where a particle starting at a specified point will end up (advection)

[Comparing 2D vector field visualization methods:A user study. Laidlaw et al. IEEE Trans. Visualization and Computer Graphics (TVCG) I I:I (2005), 59-70.]

Idiom: similarity-clustered streamlines

- data
- 3D vector field
- derived data (from field)
- streamlines: trajectory particle will follow
- derived data (per streamline)
- curvature, torsion, tortuosity
- signature: complex weighted combination
- compute cluster hierarchy across all signatures
- encode: color and opacity by cluster
- tasks
- find features, query shape
- scalability
- millions of samples, hundreds of streamlines

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Oct 2014.
- Chap 8:Arrange Spatial Data
- How Maps Work: Representation,Visualization, and Design. MacEachren. Guilford Press, 1995.
- Overview of visualization. Schroeder and. Martin. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 3-39. Elsevier, 2005.
- Real-Time Volume Graphics. Engel, Hadwiger, Kniss, Reza-Salama, and Weiskopf. AK Peters, 2006.
- Overview of flow visualization. Weiskopf and Erlebacher. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 26I-278. Elsevier, 2005.

Outline

- Session l 2:00-3:40pm
-Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
-Reduce: Filter, Aggregate
-Embed: Focus+Context

Arrange networks and trees

Θ Node-Link Diagrams
Connection Marks
\checkmark NETWORKS \downarrow TREES

Θ Adjacency Matrix
Derived Table
\checkmark NETWORKS \downarrow TREES

Θ Enclosure
Containment Marks

\times NETWORKS
TREES

Idiom: force-directed placement

- visual encoding
- link connection marks, node point marks
- considerations
- spatial position: no meaning directly encoded
- left free to minimize crossings
- proximity semantics?
- sometimes meaningful
- sometimes arbitrary, artifact of layout algorithm

- tension with length
- long edges more visually salient than short
- tasks
- explore topology; locate paths, clusters
- scalability
- node/edge density $\mathrm{E}<4 \mathrm{~N}$

Idiom: adjacency matrix view

- data: network
-transform into same data/encoding as heatmap
- derived data: table from network

- I quant attrib
- weighted edge between nodes
-2 categ attribs: node list $\times 2$
- visual encoding
- cell shows presence/absence of edge
- scalability
- IK nodes, IM edges

[Points of view: Networks. Gehlenborg and Wong. Nature Methods 9:II5.]

Connection vs. adjacency comparison

- adjacency matrix strengths
-predictability, scalability, supports reordering
- some topology tasks trainable
- node-link diagram strengths
-topology understanding, path tracing - intuitive, no training needed

http://www.michaelmcguffin.com/courses/vis/patterns/nAdjacencyMatrix.png
- empirical study
- node-link best for small networks
- matrix best for large networks
- if tasks don't involve topological structure!
[On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Ghoniem, Fekete, and Castagliola. Information Visualization 4:2
(2005), I I 4-135.]

Idiom: radial node-link tree

- data
- tree
- encoding
- link connection marks
- point node marks
-radial axis orientation
- angular proximity: siblings
- distance from center: depth in tree
- tasks
- understanding topology, following paths
- scalability

- IK - IOK nodes

Idiom: treemap

- data
- tree
- I quant attrib at leaf nodes
- encoding
- area containment marks for hierarchical structure
- rectilinear orientation
- size encodes quant attrib
- tasks
- query attribute at leaf nodes

http://tulip.labri.fr/Documentation/3 7/userHandbook/html/ch06.html
- scalability
- IM leaf nodes

Link marks: Connection and containment

- marks as links (vs. nodes)
- common case in network drawing
- ID case: connection
- ex: all node-link diagrams
- emphasizes topology, path tracing
- networks and trees
-2D case: containment
- ex: all treemap variants
- emphasizes attribute values at leaves (size coding)
- only trees

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 9:Arrange Networks andTrees
- Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. von Landesberger et al. Computer Graphics Forum 30:6 (201I), I7I9-I749.
- Simple Algorithms for Network Visualization:A Tutorial. McGuffin.Tsinghua Science and Technology (Special Issue on Visualization and Computer Graphics) I7:4 (2012), 383-398.
- Drawing on Physical Analogies. Brandes. In Drawing Graphs: Methods and Models, LNCS Tutorial, 2025, edited by M. Kaufmann and D.Wagner, LNCS Tutorial, 2025, pp. 7I-86. Springer-Verlag, 2001.
- http://www.treevis.net Treevis.net:A Tree Visualization Reference. Schulz. IEEE Computer Graphics and Applications 3I:6 (20II), II-I5.
- Perceptual Guidelines for Creating Rectangular Treemaps. Kong, Heer, and Agrawala. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis) 16:6 (2010), 990-998.

Outline

- Session l 2:00-3:40pm
- Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate
-Embed: Focus+Context

Idiom design choices: First half

Encode

Color: Luminance, saturation, hue

- 3 channels
-identity for categorical
- hue
- magnitude for ordered
- luminance
- saturation
- RGB: poor for encoding
- HSL: better, but beware
- lightness \neq luminance

Luminance

Saturation

Hue

\square

\square
\square
\square
\square

Corners of the RGB color cube

L from HLS
All the same

Luminance values

Colormaps

\rightarrow Categorical
\rightarrow Ordered
\rightarrow Sequential

\rightarrow Diverging

Binary

Categorical
,
-
\longrightarrow

Sequential
after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Colormaps

\rightarrow Categorical
$\square \square$
\rightarrow Ordered
\rightarrow Sequential

\rightarrow Bivariate
$\stackrel{\downarrow}{\longleftrightarrow}$

Binary

Categorical

Categorical

Categorical

Sequential

Colormaps

\rightarrow Categorical

\rightarrow Ordered

\rightarrow Bivariate

use with care!

Binary

Categorical

Diverging

Diverging

-1 0 +1

Sequential
after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Colormaps

\rightarrow Categorical
Binary

\rightarrow Ordered

\rightarrow Bivariate

- color channel interactions
- size heavily affects salience
- small regions need high saturation
- large need low saturation
- saturation \& luminance: 3-4 bins max
- also not separable from transparency

Diverging

Sequential
Diverging

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edulfaculty/c/a/cab38/ColorSch/Schemes.html]

Categorical color: Discriminability constraints

- noncontiguous small regions of color: only 6-12 bins

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and.Treinish. Proc. IEEE Visualization (Vis), pp. I I 8-I 25, I995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable
- alternatives
- large-scale structure: fewer hues

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable
- alternatives
- large-scale structure: fewer hues
- fine structure: multiple hues with monotonically increasing
luminance [eg viridis R/python]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable
- alternatives
- large-scale structure: fewer hues
- multiple hues with monotonically increasing luminance for finegrained [eg viridis]
- segmented rainbows for binned - or categorical

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

Map other channels

- size
- length accurate, 2D area ok, 3D volume poor
- angle
- nonlinear accuracy
- horizontal, vertical, exact diagonal
- shape
- complex combination of lower-level primitives
- many bins
- motion
- highly separable against static
- binary: great for highlighting
- use with care to avoid irritation
Θ Size, Angle, Curvature, ...
\rightarrow Length
\rightarrow Angle
\rightarrow Area
\rightarrow Curvature
\rightarrow Volume
Θ Shape
$+\square \square \Delta$
Θ Motion
\rightarrow Motion
\quad Direction, Rate,

Frequency, ...

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 10: Map Color and Other Channels
- ColorBrewer, Brewer.
- http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006.
-http://www.stonesc.com/Vis06
- A Field Guide to Digital Color. Stone.AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14-I7.
- Visual Thinking for Design.Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition.Ware. Morgan Kaufmann / Academic Press, 2004.
- http://www.r-bloggers.com/using-the-new-viridis-colormap-in-r-thanks-to-simon-garnier/

Outline

- Session l 2:00-3:40pm
-Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate
-Embed: Focus+Context

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I / _ \|))
\rightarrow Shape
$+0 \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

How to handle complexity: I previous strategy + 3 more
\rightarrow Derive

Manipulate
Θ Change

Θ Select
 views

- reduce items/attributes within single view
- derive new data to show within view

Facet
\rightarrow Juxtapose

Θ Partition

Θ Superimpose

Reduce
Θ Filter

Θ Aggregate

Θ Embed

Manipulate

Θ Change over Time

Θ Select

Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Attribute Reduction
\rightarrow Slice

\rightarrow Cut

\rightarrow Project

$$
\stackrel{\bullet}{\bullet \bullet} \rightarrow \left\lvert\, \begin{array}{ll}
\prime^{\prime} \\
\hline
\end{array}\right.
$$

Idiom: Re-encode

System: Tableau

Idiom: Reorder

System: LineUp

- data: tables with many attributes

- task: compare rankings

[LineUp:Visual Analysis of Multi-Attribute Rankings. Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis 2013) 19:I2 (20 I3), 2277-2286.]

Idiom: Realign

System: LineUp

- stacked bars
- easy to compare
- first segment
- total bar
- align to different segment
-supports flexible comparison

[LineUp:Visual Analysis of Multi-Attribute Rankings.Gratzl, Lex, Gehlenborg, Pfister, and Streit. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis 20I3) I9:I2 (2013), 2277-2286.]

Idiom: Animated transitions

- smooth transition from one state to another
-alternative to jump cuts
- support for item tracking when amount of change is limited
- example: multilevel matrix views
- scope of what is shown narrows down
- middle block stretches to fill space, additional structure appears within
- other blocks squish down to increasingly aggregated representations

[Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227-232, 2003.]

Select and highlight

- selection: basic operation for most interaction
- design choices
-how many selection types?
- click vs hover: heavyweight, lightweight
- primary vs secondary: semantics (eg source/target)
- highlight: change visual encoding for selection targets
- color
- limitation: existing color coding hidden
- other channels (eg motion)
-add explicit connection marks between items

Navigate: Changing item visibility

- change viewpoint
-changes which items are visible within view
- camera metaphor
- zoom
- geometric zoom: familiar semantics
- semantic zoom: adapt object representation based on available pixels » dramatic change, or more subtle one
- pan/translate
- rotate
- especially in 3D
- constrained navigation
- often with animated transitions
Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Constrained

- often based on selection set

Idiom: Semantic zooming

System: LiveRAC

- visual encoding change
- colored box
- sparkline
- simple line chart
- full chart: axes and tickmarks

Navigate: Reducing attributes

- continuation of camera metaphor - slice
- show only items matching specific value for given attribute: slicing plane
- axis aligned, or arbitrary alignment - cut
- show only items on far slide of plane from camera
- project
- change mathematics of image creation
- orthographic
- perspective
- many others: Mercator, cabinet, ...

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap II:Manipulate View
- Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans. on Visualization and Computer Graphics (Proc. InfoVis07) I3:6 (2007), I2401247.
- Selection: 524,288 Ways to Say "This is Interesting". Wills. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 54-6I, I996.
- Smooth and efficient zooming and panning. van $W_{i j k}$ and Nuij. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I5-22, 2003.
- Starting Simple - adding value to static visualisation through simple interaction. Dix and Ellis. Proc.Advanced Visual Interfaces (AVI), pp. I24-I34, I998.

Outline

- Session l 2:00-3:40pm
- Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate
-Embed: Focus+Context

Facet
\rightarrow Juxtapose

Partition

Superimpose

Juxtapose and coordinate views

\rightarrow Share Encoding: Same/Different
\rightarrow Linked Highlighting

\rightarrow Share Data: All/Subset/None

\rightarrow Share Navigation

Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
- powerful and pervasive interaction idiom
- encoding: different
- multiform
- data: all shared

[Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237-246. IOS Press, I995.]

Idiom: bird's-eye maps

System: Google Maps

- encoding: same
- data: subset shared
- navigation: shared - bidirectional linking
- differences
- viewpoint
- (size)
- overview-detail

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.]

Idiom: Small multiples

System: Cerebral

- encoding: same
- data: none shared
- different attributes for node colors
-(same network layout)
- navigation: shared

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) I4:6 (2008), I253-I 260.$]$

Coordinate views: Design choice interaction

		Data		
		All	Subset	None
	Same	Redundant	Overview/ Detail	Small Multiples
	Different	Multiform	Multiform, Overview/ Detail	No Linkage

- why juxtapose views?
-benefits: eyes vs memory
- lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
- costs: display area, 2 views side by side each have only half the area of one view

Why not animation?

- disparate frames and regions: comparison difficult
-vs contiguous frames
-vs small region
-vs coherent motion of group
- safe special case
- animated transitions

System:Improvise

- investigate power of multiple views
- pushing limits on view count, interaction complexity
- how many is ok?
- open research question
- reorderable lists
- easy lookup
- useful when linked to other encodings

[Building Highly-Coordinated Visualizations In Improvise. Weaver. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I59-I 66, 2004.]

Partition into views

- how to divide data between views
- split into regions by attributes
-encodes association between items using spatial proximity
- order of splits has major implications for what patterns are visible
- no strict dividing line
- view: big/detailed
- contiguous region in which visually encoded data is shown on the display
-glyph: smalliconic
- object with internal structure that arises from multiple marks
Θ Partition into Side-by-Side Views

Partitioning: List alignment

- single bar chart with grouped bars
- split by state into regions
- complex glyph within each region showing all ages
- compare: easy within state, hard across ages
- small-multiple bar charts
- split by age into regions
- one chart per region
- compare: easy within age, harder across states

Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
- years as rows
-months as columns
- color by price
- neighborhood patterns
- where it's expensive
- where you pay much more for detached type

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Partitioning: Recursive subdivision

System: HIVE

- switch order of splits
-type then neighborhood
- switch color
-by price variation
- type patterns
- within specific type, which neighborhoods inconsistent

Partitioning: Recursive subdivision

System: HIVE

- different encoding for second-level regions
- choropleth maps

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Partitioning: Recursive subdivision

System: HIVE

- size regions by sale counts
- not uniformly
- result: treemap

[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) I5:6 (2009), 977-984.]

Superimpose layers

- Iayer: set of objects spread out over region
- each set is visually distinguishable group
- extent: whole view
Θ Superimpose Layers
- design choices
-how many layers, how to distinguish?

- encode with different, nonoverlapping channels
- two layers achieveable, three with careful design
- small static set, or dynamic from many possible?

Static visual layering

- foreground layer: roads
- hue, size distinguishing main from minor
-high luminance contrast from background
- background layer: regions
- desaturated colors for water, parks, land areas
- user can selectively focus attention
- "get it right in black and white"
- check luminance contrast with greyscale view
[Get it right in black and white. Stone. 2010. http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white]

Superimposing limits

- few layers, but many lines
- up to a few dozen
-but not hundreds
- superimpose vs juxtapose: empirical study
- superimposed for local, multiple for global
- tasks
- local: maximum, global: slope, discrimination
- same screen space for all multiples vs single superimposed

Dynamic visual layering

- interactive, from selection
- lightweight: click
- very lightweight: hover
- ex: l-hop neighbors
[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23:8 (2007), I040-1042.]

System: Cerebral

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 12: Facet Into Multiple Views
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.
- Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Plumlee and Ware. ACM Trans. on ComputerHuman Interaction (ToCHI) I3:2 (2006), I79-209.
- Exploring the Design Space of Composite Visualization. Javed and Elmqvist. Proc. Pacific Visualization Symp. (PacificVis), pp. I-9, 20 I 2.
- Visual Comparison for Information Visualization. Gleicher, Albers,Walker, Jusufi, Hansen, and Roberts. Information Visualization 10:4 (201I), 289-309.
- Guidelines for Using Multiple Views in Information Visualizations. Baldonado,Woodruff, and Kuchinsky. In Proc. ACM Advanced Visual Interfaces (AVI), pp. I IO-II9, 2000.
- Cross-Filtered Views for Multidimensional Visual Analysis. Weaver. IEEE Trans.Visualization and Computer Graphics 16:2 (Proc. InfoVis 20IO), I92-204, 2010.
- Linked Data Views. Wills. In Handbook of Data Visualization, Computational Statistics, edited by Unwin, Chen, and Härdle, pp. 216-24I. Springer-Verlag, 2008.
- Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications. Borgo, Kehrer, Chung, Maguire, Laramee, Hauser,Ward, and Chen. In Eurographics State of the Art Reports, pp. 39-63, 2013.

Outline

- Session l 2:00-3:40pm
-Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
- Reduce: Filter, Aggregate
-Embed: Focus+Context

Reduce items and attributes

- reduce/increase: inverses
- filter
- pro: straightforward and intuitive
- to understand and compute
- con: out of sight, out of mind
- aggregation
- pro: inform about whole set
- con: difficult to avoid losing signal
- not mutually exclusive
- combine filter, aggregate
- combine reduce, change, facet

Reducing Items and Attributes

Reduce

\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

Θ Filter

\oplus Aggregate

\oplus Embed

Idiom: dynamic filtering

System: FilmFinder

- item filtering

- browse through tightly coupled interaction
- alternative to queries that might return far too many or too few

[Visual information seeking:Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman.
Proc.ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313-3I7, 1994.]

Idiom: scented widgets

- augment widgets for filtering to show information scent
- cues to show whether value in drilling down further vs looking elsewhere
- concise, in part of screen normally considered control panel

[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE Trans.
Visualization and Computer Graphics (Proc. InfoVis 2007) I3:6 (2007), I | 29-| | 36.]

Idiom: DOSFA

- attribute filtering

- encoding: star glyphs

为

[Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration Of High Dimensional Datasets. Yang, Peng,Ward, and. Rundensteiner. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I05-I I 2, 2003.]

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
- new table: keys are bins, values are counts
- bin size crucial

- pattern can change dramatically depending on discretization
-opportunity for interaction: control bin size on the fly

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
-5 quant attribs
- median: central line
- lower and upper quartile: boxes
- lower upper fences: whiskers
- values beyond which items are outliers

- outliers beyond fence cutoffs explicitly shown
[40 years of boxplots.Wickham and Stryjewski. 20I 2. had.co.nz]

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: hierarchical clustering
- encoding:
-cluster band with variable transparency, line at mean, width by min/max values
- color by proximity in hierarchy

[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner. Proc. IEEE Visualization Conference (Vis ’99), pp. 43- 50, I999.]

Dimensionality reduction

- attribute aggregation
- derive low-dimensional target space from high-dimensional measured space
- use when you can't directly measure what you care about
- true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
- latent factors, hidden variables

Tumor
 Measurement Data

derived data: 2D target space

Idiom: Dimensionality reduction for documents

Task 3

In
Scatterplot Clusters \& points

What?
Θ In Scatterplot Why?
Θ In Clusters \& points
Produce
Θ Out Labels for clusters

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 13: Reduce Items and Attributes
- Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439-454.
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.

Outline

- Session l 2:00-3:40pm
- Analysis: What,Why, How
- Marks and Channels
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Session 2 4:15pm-5:50pm
- Map Color and Other Channels
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
-Reduce: Filter, Aggregate
-Embed: Focus+Context

Embed: Focus+Context

- combine information within single view
- elide
- selectively filter and aggregate
- superimpose layer
- local lens
- distortion design choices
-region shape: radial, rectilinear, complex
-how many regions: one, many
-region extent: local, global
-interaction metaphor
Θ Embed
\rightarrow Elide Data

\rightarrow Superimpose Layer

\rightarrow Distort Geometry

Idiom: DOITrees Revisited

- elide
- some items dynamically filtered out
- some items dynamically aggregated together
-some items shown in detail

[DOITrees Revisited: Scalable, Space-Constrained Visualization of Hierarchical Data. Heer and Card. Proc.Advanced Visual Interfaces (AVI), pp. 42 I-424, 2004.] I38

Idiom: Fisheye Lens

- distort geometry
- shape: radial
-focus: single extent
- extent: local
-metaphor: draggable lens

http://tulip.labri.fr/TulipDrupal/?q=node/351 http://tulip.labri.frr/TulipDrupall?q=node/371

Distortion costs and benefits

magnifying lens

- benefits
- combine focus and context information in single view
- costs
- length comparisons impaired
- network/tree topology comparisons unaffected: connection, containment
- effects of distortion unclear if original structure unfamiliar
- object constancy/tracking maybe impaired
fisheye lens

neighborhood layering

Bring and Go

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap I4: Embed: Focus+Context
- A Fisheye Follow-up: Further Reflection on Focus + Context. Furnas. Proc.ACM Conf. Human Factors in Computing Systems (CHI), pp. 999-I008, 2006.
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.

Sneak preview: Not covered today

- Rules of Thumb
-No unjustified 3D
- Power of the plane, dangers of depth
- Occlusion hides information
- Perspective distortion loses information
- Tilted text isn't legible
-No unjustified 2D
-Resolution over immersion
- Overview first, zoom and filter, details on demand
-Function first, form next

More Information

@tamaramunzner

- this tutorial
http://www.cs.ubc.ca/~tmm/talks.htm|\#halfdaycoursel5
- papers, videos, software, talks, full courses http://www.cs.ubc.ca/group/infovis
http://www.cs.ubc.ca/~tmm
- book
http://www.cs.ubc.ca/~tmm/vadbook
- acknowledgements
-illustrations: Eamonn Maguire

Visualization Analysis and Design.

[^0]: \rightarrow Many Keys
 Recursive Subdivision

