

Scalable Visualization

- Visual representation of node-link graphs useful in many domains
 - many real-world datasets are very large
- Designing for scalability
 - graphics issues
 - guaranteed frame ra
 - interaction issues
 - guidance on where to look next
 - cognitive issues
 - maintain orientation

 see details in context
 - guaranteed visibility of landmarks

H3

 H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space

– Tamara Munzner. Proc. InfoVis 97, pp 2-10.

- Drawing Large Graphs with H3Viewer and Site Manager
 Tamara Munzner. Proc. Graph Drawing 98, pp 384-393.
- video, free software available from http://graphics.stanford.edu/~munzner/h3

H3 Features

- 3D hyperbolic geometry shows large local neighborhood
 - single focus
 - fisheye distortion
 - understanding graph topological structure does not require judging distances
 - details for dozens of nodes, aggregate information for thousands of nodes
- · uses spanning tree as backbone for layout
 - explore non-tree links through interaction
 - appropriate for quasi-hierarchical graphs

H3 Limitations

- see large neighborhood but not global overview
 - can still get lost
- only single focus
 - intrinsic to hyperbolic geometry

TreeJuxtaposer

- side by side comparison of evolutionary trees
- [video]

Accordion Drawing

- rubber-sheet navigation
 - stretch out part of surface, the rest squishes
 - borders nailed down
 - Focus+Context technique integrated overview, details
 - old idea

 - [Sarkar et al 93], [Robertson et al 91]
- guaranteed visibility
 - marks always visible
 important for scalability

 - new idea
 - [Munzner et al 03]

1

Guaranteed Visibility

- marks are always visible
- · easy with small datasets

Guaranteed Visibility Challenges

- hard with larger datasets
- · reasons a mark could be invisible

Guaranteed Visibility Challenges

hard with larger datasets

- outside the window

• AD solution: constrained navigation

· reasons a mark could be invisible

Guaranteed Visibility Challenges

- hard with larger datasets
- reasons a mark could be invisible
 - outside the window
 - AD solution: constrained navigation
 - underneath other marks · AD solution: avoid 3D

ľ

Guaranteed Visibility Challenges

- hard with larger datasets
- reasons a mark could be invisible
 - outside the window
 - AD solution: constrained navigation
 - underneath other marks · AD solution: avoid 3D
 - smaller than a pixel
 - · AD solution: smart culling

TJ Contributions

- first interactive tree comparison system
 - automatic structural difference computation - guaranteed visibility of marked areas
- scalable to large datasets
 - 250,000 to 500,000 total nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear
- scalable to large displays (4000 x 2000)
- introduced
 - guaranteed visibility, accordion drawing

Further Work

- Partitioned Rendering Infrastructure for Scalable Accordion Drawing (Extended Version)
- James Slack, Kristian Hildebrand, and Tamara Munzner. Information Visualization 5(2), pp 137-151, 2006 generic and efficient rendering handles trees over 4,000,000 nodes
- Navigation James Slack and Tamara Munzner. Proc. InfoVis06, to appear

 - generic navigation
- SequenceJuxtaposer: Fluid Navigation For Large-Scale Sequence Comparison In Context
 - James Slack, Kristian Hildebrand, Tamara Munzner, and Katherine St. John. German Conference on Bioinformatics 2004, pp 37-42 accordion drawing for gene sequences

TopoLayout

- TopoLayout: Multi-Level Graph Layout by Topological Features
 - Dan Archambault, Tamara Munzner, David Auber
 - Trans. Visualization and Computer Graphics, to appear
- Emphasis on offline computation of best possible static layout, vs. interactive frame rates

Subgraph: subset of these nodes and subset of the edges between them

Challenges

- determining appropriate information density

 clutter vs. wasted space
- automatic detection of when given layout algorithm is appropriate
- scalability along different dimensions
 - addressed here
 - dataset size, display size
 - not addressed
 - heterogeneous vs. homogeneous datasets