Information Visualization at UBC Tamara Munzner University of British Columbia

Information Visualization

- · visual representation of abstract data
 - computer-based
 - interactive
 - goal of helping human perform some task more effectively
- bridging many fields
 - cognitive psych: finding appropriate representation
 - HCI: using task to guide design and evaluation
 - graphics: interacting in realtime
- external representation reduces load on working memory

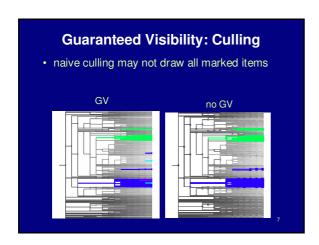
2

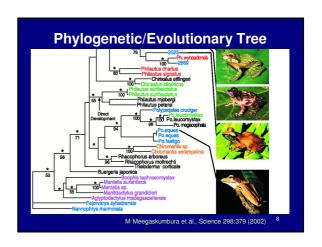
Current Projects

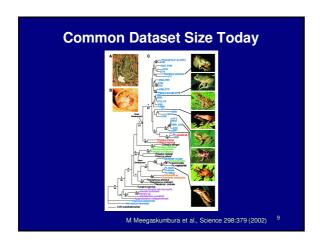
- · accordion drawing
 - TreeJuxtaposer, SequenceJuxtaposer, TJC, PRISAD, PowerSetViewer
- evaluation
 - Focus+Context, Transformations
- · graph drawing
 - TopoLayout
- · dimensionality reduction
 - MDSteer, PBSteer

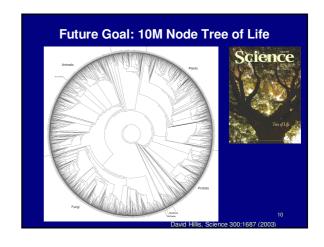
3

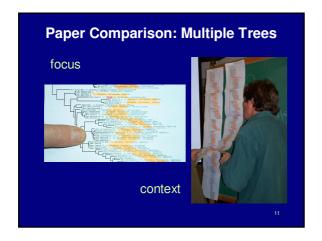
Accordion Drawing

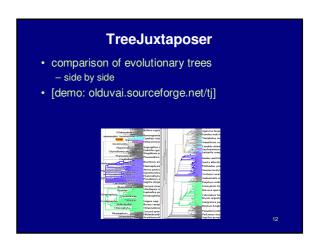

- rubber-sheet navigation
 - stretch out part of surface, the rest squishes
 - borders nailed down
 - Focus+Context technique
 - integrated overview, details
 - old idea
 - [Sarkar et al 93], ..
- · guaranteed visibility
 - marks always visible
 - important for scalability
 - new idea
 - [Munzner et al 03]




• easy with small datasets • or easy with small datasets • or easy with small datasets


Guaranteed Visibility Challenges


- hard with larger datasets
- reasons a mark could be invisible
 - outside the window
 - · AD solution: constrained navigation
 - underneath other marks
 - AD solution: avoid 3D
 - -smaller than a pixel
 - AD solution: smart culling



TJ Contributions

- first interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of marked areas
- · scalable to large datasets
 - -250,000 to 500,000 total nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear
- introduced accordion drawing (AD)
- introduced guaranteed visibility (GV)

13

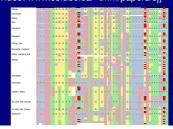
Joint Work: TJ Credits

- Tamara Munzner (UBC prof)
- Francois Guimbretiere (Maryland prof)
- Serdar Tasiran (Koc Univ, prof)
- Li Zhang, Yunhong Zhou (HP Labs)
- TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility
- Proc. SIGGRAPH 2003
- www.cs.ubc.ca/~tmm/papers/tj
- James Slack (UBC PhD)
- Tamara Munzner (UBC prof)
- Francois Guimbretiere (Maryland prof)
 - TreeJuxtaposer: InfoVis03 Contest Entry. (Overall Winner)
 - InfoVis 2003 Contest
 - www.cs.ubc.ca/~tmm/papers/contest03

14

Genomic Sequences

- · multiple aligned sequences of DNA
- now commonly browsed with web apps


- zoom and pan with abrupt jumps

Gassinan of trocorrect net of the trochood of conduction of the object of the trochood of the object of the object

SequenceJuxtaposer

- · dense grid, following conventions
 - rows of sequences, typically species
 - columns of partially aligned nucleotides
 - [video: www.cs.ubc.ca/~tmm/papers/sj]

16

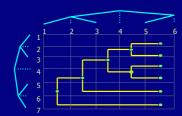
SJ Contributions

- · accordion drawing for gene sequences
 - smooth, fluid transitions between states
 - guaranteed visibility for globally visible landmarks
 - difference thresholds changeable on the fly
- 2004 paper results: 1.7M nucleotides
 - current with PRISAD: 40M nucleotides
- · future work
 - hierarchical structure from annotation dbs
 - editing

17

Joint Work: SJ Credits

- James Slack (UBC PhD)
- Kristian Hildebrand (Weimar Univ MS)
- Tamara Munzner (UBC prof)
- Katherine St. John (CUNY prof)
 - SequenceJuxtaposer: Fluid Navigation For Large-Scale Sequence Comparison In Context
 - Proc. German Conference Bioinformatics 2004
 - -www.cs.ubc.ca/~tmm/papers/sj


Scaling Up Trees

- TJ limits: 500K nodes
 - large memory footprint
 - CPU-bound, far from achieving peak rendering performance of graphics card
- in TJ, quadtree data structure used for
 - placing nodes during layout
 - drawing edges given navigation
 - culling edges with GV
 - picking edges during interaction

19

New Data Structures, Algorithms

- · new data structures
 - two 1D hierarchies vs. one 2D quadtree
- new drawing/culling algorithm

20

TJC/TJC-Q Results

- TJC
 - no quadtree
 - picking with new hardware feature
 - requires HW multiple render target support
 - 15M nodes
- · TJC Q
 - lightweight quadtree for picking support
 - -5M nodes
- · both support tree browsing only
 - no comparison data structures

21

Joint Work: TJC, TJC-Q Credits

- Dale Beermann (Virginia MS alum)
- Tamara Munzner (UBC prof)
- Greg Humphreys (Virginia prof)
 - Scalable, Robust Visualization of Large Trees
 - Proc. EuroVis 2005
 - -www.cs.virginia.edu/~gfx/pubs/TJC

22

PRISAD

- generic accordion drawing infrastructure
 - handles many application types
- efficient
 - guarantees of correctness: no overculling
 - tight bounds on overdrawing
 - handles dense regions efficiently
 - new algorithms for rendering, culling, picking
 - exploit application dataset characteristics instead of requiring expensive additional data structures

23

PRISAD Results

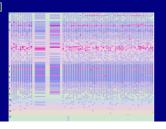
- trees
 - -4M nodes
 - -5x faster rendering, 5x less memory
 - order of magnitude faster for marking
- sequences
 - -40M nucleotides
- power sets
 - -2M to 7M sets
 - alphabets beyond 20,000

Joint Work: PRISAD Credits

- James Slack (UBC PhD)
- Kristian Hildebrand (Weimar MS)
- Tamara Munzner (UBC prof)
 - PRISAD: A Partitioned Rendering Infrastructure for Scalable Accordion Drawing.
 - Proc. InfoVis 2005, to appear

25

PowerSetViewer


- data mining of market basket transactions
 - show progress of steerable data mining system with constraints
 - want visualization "windshield" to guide parameter setting choices on the fly
- · dynamic data
 - all other AD applications had static data
- · transactions as sets
 - items bought together make a set
 - alphabet is items in stock at store
 - space of all possible sets is power set

26

PowerSetViewer

- show position of logged sets within enumeration of power set
 - very long 1D linear list
 - wrap around into 2D grid of fixed width

- [video]

27

Joint Work: PSV Credits

- · work in progress
- Tamara Munzner (UBC prof)
- Qiang Kong (UBC MS)
- Raymond Ng (UBC prof)

28

Current Projects

- · accordion drawing
 - TreeJuxtaposer, SequenceJuxtaposer, TJC, PRISAD, PowerSetViewer
- Focus+Context evaluation
 - system, perception
- graph drawing
 - TopoLayout
- · dimensionality reduction
 - MDSteer, PBSteer

9

Focus+Context

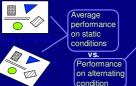
- integrating details and overview into single view
 - carefully chosen nonlinear distortion
 - what are costs? what are benefits?

Focus+Context System Evaluation

- · how focus and context are used with
 - rubber sheet navigation vs. pan and zoom
 - integrated scene vs. separate overview
- · user studies using modified TJ
 - abstract tasks derived from biologists' needs based on interviews

31

Joint Work: F+C System Eval Credits


- · work in progress
- Adam Bodnar (UBC MS)
- Dmitry Nekrasovski (UBC MS)
- Tamara Munzner (UBC prof)
- Joanna McGrenere (UBC prof)
- Francois Guimbretiere (Maryland prof)

32

F+C Perception Evaluation

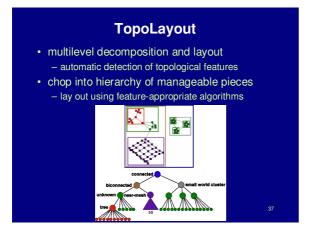
- understand perceptual costs of transformation
 - find best transformation to use
- visual search for target amidst distractors

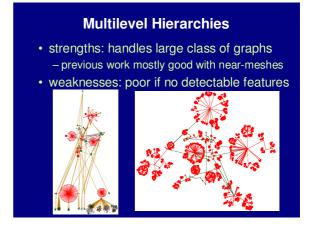
- shaker paradigm

F+C Perception Evaluation

- understand perceptual costs of transformation
 - deterioration in performance
 - time, effort, error
 - static costs: caused by crowding, distortion of static transformation itself
 - high static cost
 - dynamic costs: reorienting and remapping when transformation applied or focus moved
 - low dynamic cost
 - large no-cost zone

34


Joint Work: F+C Perceptual Eval


- Keith Lau (former UBC undergrad)
- Ron Rensink (UBC prof)
- Tamara Munzner (UBC prof)
 - Perceptual Invariance of Nonlinear Focus+Context Transformations
 - Proc. First Symposium on Applied Perception in Graphics and Visualization, 2004
- · work in progress: continue investigation
- · Heidi Lam (UBC PhD)
- Ron Rensink (UBC prof)
- Tamara Munzner (UBC prof)

35

Current Projects

- · accordion drawing
 - TreeJuxtaposer, SequenceJuxtaposer, TJC, PRISAD, PowerSetViewer
- Focus+Context evaluation
 - system, perception
- graph drawing
 - TopoLayout
- · dimensionality reduction
 - MDSteer, PBSteer

Joint Work: TopoLayout Credits

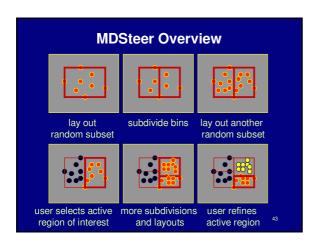
- · work in progress
- Dan Archambault (UBC PhD)
- Tamara Munzner (UBC prof)
- David Auber (Bordeaux prof)

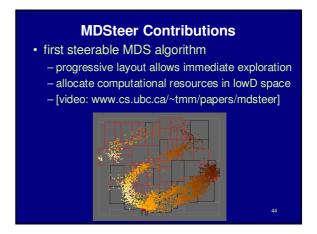
accordion drawing
 Tree luxtanoser, Sequence lux

Current Projects

- TreeJuxtaposer, SequenceJuxtaposer, TJC, PRISAD, PowerSetViewer
- Focus+Context evaluation
 system, perception
- · graph drawing
 - TopoLayout
- · dimensionality reduction
 - MDSteer, PBSteer

40


Dimensionality Reduction


- mapping multidimensional space into space of fewer dimensions
 - typically 2D for infovis
 - keep/explain as much variance as possible
 - show underlying dataset structure
- multidimensional scaling (MDS)
 - minimize differences between interpoint distances in high and low dimensions

41

Scalability Limitations

- · high cardinality and high dimensionality: slow
 - motivating dataset: 120K points, 300 dimensions
 - most existing software could not handle at all
 - 2 hours to compute with O(n^{5/4}) HIVE [Ross 03]
- · real-world need: exploring huge datasets
 - people want tools for millions of points
- strategy
 - start interactive exploration immediately
 progressive layout
 - concentrate computational resources in interesting areas
 steerability
 - often partial layout is adequate for task

Joint Work: MDSteer Credits Matt Williams (former UBC MS) • Tamara Munzner (UBC prof) - Steerable Progressive Multidimensional Scaling - Proc. InfoVis 2004 - www.cs.ubc.ca/~tmm/papers/mdsteer · work in progress: PBSteer for progressive binning - David Westrom (former UBC undergrad) - Tamara Munzner (UBC prof) - Melanie Tory (UBC postdoc)

Summary • broad array of infovis projects at UBC · theme: scalability - size of dataset - number of available pixels

InfoVis Service

- IEEE Symposium on Information Visualization (InfoVis) Papers/Program Co Chair 2003, 2004
- IEEE Executive Committee, Technical Committee on Visualization and Graphics
- · Visualization Research Challenges - report commissioned by NSF/NIH

More Information

- papers, videos, images
 - www.cs.ubc.ca/~tmm
- free software
 - olduvai.sourceforge.net/tj
 - olduvai.sourceforge.net/sj