Graph Drawing Through the Lens of a Framework for Analyzing Visualization Methods

Tamara Munzner

Department of Computer Science University of British Columbia

Graph Drawing 2013, Invited Talk 23 Sep 2013

http://www.cs.ubc.ca/~tmm/talks.html#gd13

Why?...

Graph Drawing Through the Lens of a Framework for Analyzing Visualization Methods

Graph Drawing Through the Lens of Framework for Analyzing **Visualization** Methods

Why analyze vis methods?

- think systematically about space of possibilities -methods: design space of techniques
- find gaps in previous work -develop new techniques, algorithms
- characterize existing/new work
 - -match up algorithms and techniques to real-world problems
 - -facilitate broader adoption by establishing suitability

Why?...

- Antinit Statigenil's an alistica

Graph Drawing Through the Lens of a Framework for Analyzing Visualization methods

Why connect graph drawing and visualization?

- vis draws on GD community's work
- -especially algorithms, systems
- GD motivated by vis
- -great connection to application domains
- network data: special case of general principles

Outline

- Levels of visualization design
- Abstraction for data
- Principles of marks and channels
- Using space
- Further analysis examples
- Conclusions

Levels of visualization design

Separating vis design into four levels

 connecting all the way from real-world problems of target users to algorithms

domain problem	
data/task abstraction	
encoding/interaction technique	
algorithm	

-covered elsewhere: validation

[A Nested Model for Visualization Design and Validation. Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):921-928, 2009.]

Emphasis: Technique level

- just above familiar algorithm level, connects directly
- plus a bit of background on abstraction

domain problem
data/task abstraction
encoding/interaction technique
algorithm

[A Nested Model for Visualization Design and Validation. Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):921-928, 2009.]

Goal: More upwards characterization

map from algorithms up to techniques they support

[A Nested Model for Visualization Design and Validation. Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):921-928, 2009.]

Characterize how?

• focus here on one major issue

-how is space used?

- explicit consideration in visualization
 - -trickier to see from purely graph drawing perspective
 - common cases not trivial to analyze!
 - -node-link diagrams, compound graphs

Covered elsewhere: Downwards from real users

design study methodology paper

-problem-driven work: building for specific people to use

[Design Study Methodology: Reflections from the Trenches and the Stacks. SedImair, Meyer, and Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2012), 18(12):2431-2440, 2012.]

Abstraction for data

Abstraction: data types

Abstraction: data types

-covered elsewhere: task abstraction

[A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis), to appear 2013.]

Deriving new data: Common case

- example: Strahler number for graphs
 - -centrality metric: node importance
 - new per-node quantitative attrib
 - result of global calculation
- visualization uses
 - -fast interactive rendering: draw nodes in order of importance
 - -draw small subset: structure far more understandable than w/ random sampling
 - -more detail in Auber02

[Using Strahler numbers for real time visual exploration of huge graphs. Auber. Intl. Conf. Computer Vision and Graphics, 2002, p. 56-69.]

Principles of marks and channels

Techniques: Visual encoding

domain problem data/task abstraction encoding/interaction technique algorithm

• how to analyze?

-start with easy cases from statistical graphics

Marks and channels

- analyze as combination of marks and channels showing abstract data
- 1: vertical position

mark: line

1: vertical position

mark: point

18

Marks as links

- we implicitly perceive some properties as indicating relationships between items

 –containment
 - -connection
 - -also, proximity
 - use of space

Channel types

- channels also have implicit perceptual types —match them with attribute types
 - avoid losing information or implying incorrect properties
 - -how much: ordered
 - example: spatial position along a common scale
 - example: length of line mark
 - -what: categorical
 - example: spatial region
- spatial channels have strongest perceptual impact –reason for focus on use of space here
- many other channels: color, size, orientation, ...
 –we know types and ranking in terms of impact (roughly)

Channel rankings

Ordered : Ordinal/Quantitative How much

position on common scale position on unaligned scale 101 length CID size) - filt/angle 1/1_ VV~ anea (2D size) . Eurvature 1))) volume (3D size) @ lightness black/white 🗆 color saturation Π stipple density

Categorical What region [] color hne [] [] Shape + 0 [] L A Stipple pattern [] []

- covered elsewhere:
 [Visualization Principles http://www.cs.ubc.ca/~tmm/ talks.html#vizbi11]
- focus here: implications of these rankings!

Using space

Given - Use F Geographic Sn Fields Fields Focalar Vector 547 Tensor 547 DO

- could just use data as given
 - -cartography
 - -volume graphics
 - -flow visualization

- could just use data as given
 - -cartography
 - -volume graphics
 - -flow visualization
- focus: choosing use of space
 –central issue in graph layout

Sportial Channels Values Express

Sportial Channels Values Express values expressed spatially

–encode quantitative attribute using spatial position of mark

• example: scatterplots

values expressed spatially

–encode quantitative attribute using spatial position of mark

- example: scatterplots
- regions of space
 - -separate into regions
 - proximity implies grouping
 - -order regions
 - could be data-driven
 - -align for more precise judgements
 - can subdivide recursively

Using space: Examples

- multiple bar charts
 - -data: table, 3 attribs
 - I quant, 2 categ
 - -marks: line
 - -spatial channels
 - within each region

- -express value w/ vert spatial pos
- -align vert
- -order by quant attrib
- one choice: separate views
 - -separate into 2 regions by categ attrib
- another choice: interleaved view
 - -separate into 4 regions, 1 per item
 - -draw both attribs within region

Using space: Examples

- heatmap
- -data: same!
 - I quant, 2 categ
- -marks: area
 - (color by quant attrib)
- -spatial channels
 - separate and align in 2D matrix
 - -indexed by 2 categ attribs
 - order: many choices
 - matrix reordering algs

Using space: Examples

3D vol.grid

3+D recursive

Sportial Channels

Values

Kegions

 matrix graph view –data, channels: same!

-derived data: table from network

- I quant attrib
 - -weighted edge between nodes

-spatial channels:

cell shows presence/absence of edge

[NodeTrix: a Hybrid Visualization of Social Networks. Henry, Fekete, and McGuffin. IEEE TVCG (Proc. InfoVis) 13(6):1302-1309, 2007.] 27

Using space: Links

Node-Link Diagram

- marks as links (vs. nodes)
 - -common case in graph drawing
 - -ID case: connection
 - ex: all node-link diagrams
 - emphasizes topology, path tracing
 - -2D case: containment
 - ex: all treemap variants
 - emphasizes attribute values at leaves (size coding)

[Elastic Hierarchies: Combining Treemaps and Node-Link Diagrams. Dong, McGuffin, and Chignell. Proc. InfoVis 2005, p. 57-64.] 28

Using space: Layout orientation

Spatial Layout + Rectilinear 1 -> 2> + Parallel 1111 L Radial 22>

Using space: Layout orientation

spatial layout

 orientation of spatial axes

Using space: Layout orientation

- spatial layout
 - -orientation of spatial axes
- limitations studied
 - -rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - -see Visualization Principles talk
 - 4+ impossible
 - -radial: perceptual limits
 - angles lower precision than lengths

[Uncovering Strengths and Weaknesses of Radial Visualizations - an Empirical Approach. Diehl, Beck and Burch. IEEE TVCG (Proc. InfoVis) 16(6):935-942, 2010.]

Analysis examples: Tree drawing

- data shown
 - -link relationships
 - -tree depth
 - -sibling order
- methods
 - -connection vs containment link marks
 - -rectilinear vs radial layout
 - -spatial position channels
- considerations
 - -redundant? arbitrary?
 - -information density?
 - avoid wasting space

[Quantifying the Space-Efficiency of 2D Graphical Representations of Trees. McGuffin and Robert. Information Visualization 9:2 (2010), 115–140.]

Analysis example: force-directed placement

- visual encoding
 - -link connection marks
 - -node point marks
- considerations
 - -spatial position: no meaning directly encoded
 - left free to minimize crossings
 - -proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length

-long edges more visually salient than short

[http://mbostock.github.com/d3/ex/force.html]

```
var width = 960,
height = 500;
```

var color = d3.scale.category20();

```
var force = d3.layout.force()
    .charge(-120)
    .linkDistance(30)
    .size([width, height]);
```

Analysis example: multi-level FDP (sfdp)

- data
 - -original: network
 - -derived: cluster hierarchy atop it
- visual encoding
 - -same: link connection marks
- considerations
 - -better algorithm for same encoding technique
 - same: fundamental use of space
 - hierarchy used in algorithm but not shown explicitly

[Efficient and high quality force-directed graph drawing. Hu.The Mathematica Journal 10:37–71, 2005.]

Analysis example: GrouseFlocks

- data: compound graphs

 network
 - -cluster hierarchy atop it
 - derived or interactively chosen
- visual encoding
 - -connection marks for network links
 - -containment marks for hierarchy
 - -point marks for nodes
- dynamic interaction
 - -select individual metanodes in hierarchy to expand/contract

[GrouseFlocks: Steerable Exploration of Graph Hierarchy Space. Archambault, Munzner, and Auber. IEEE TVCG 14(4): 900-913, 2008.]

Multiple views vs single views

- powerful method: use multiple views side by side
 - -vs. superimposing multiple views as layers atop each other
 - all must have shared spatial layout
 - -vs. single view that changes over time
 - as with interactive navigation
- principle: eyes beat memory
 - -easy to compare by moving eyes between side-by-side views
 - harder to compare visible item to memory of what you saw
 - -external cognition vs. internal working memory limits

Further analysis examples

Analysis example: Cerebral

- data
 - -network
 - nodes: genes, links: known interaction
 - per-node attribs
 - -location within cell where interaction occurs
 - -biological function
 - -table
 - I quant attrib: gene expression level
 - indexed by 2 categ attribs: node/gene, experimental condition

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6): 1253-1260, 2008.]

[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23(8):1040-1042, 2007.]

36

Use of space: Cerebral

side by side views

- -small multiples
 - same encoding, different data
- -separate into regions
 - each shows entire network
 - color nodes by quant attrib for condition

[Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6):1253-1260, 2008.]

Use of space: Cerebral

- superimposed layers within each view
 - -dynamic interaction technique
- highlight I-hop neighbors on mouseover
 - –foreground layer distinguished by color

Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23(8):1040-1042, 2007.]

Use of space: Cerebral

- network visual encoding
 - -consideration
 - mimic stylized spatial semantics of hand-drawn diagrams
 - -marks: connection for links
 - -spatial channels
 - separate into regions according to subcellular location attrib
 - order regions vert by attrib
 - in bottom region: also separate into subregions by function attrib

Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 23(8):1040-1042, 2007.] 39

Considerations: Cerebral

- explicit discussion of choices for use of space
 - -design motivated by analysis of previous work
 - -justified as more suitable than characterized alternatives
 - changing single view with animation: avoided
 - -cognitive load
 - -hard to track changes across many conditions and many nodes
 - separating into one region per gene: avoided
 - -information density
 - -not enough space to show multiple attribs within node for big networks
 - -enough space to show multiple networks with single mark per node
 - » separating into one region per condition: chosen
 - -spatial position: partially constrained

Analysis example: Constellation

- data
 - multi-level network
 - node: word
 - link: words used in same dictionary definition
 - subgraph for each definition
 not just hierarchical clustering
 - paths through network
 - query for high-weight paths between 2 nodes
 - -quant attrib: plausibility

[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.]

[Constellation: A Visualization Tool For Linguistic Queries from MindNet. Munzner, Guimbretière and Robertson. Proc. IEEE Symp. InfoVis I 999, p. 132-135.]

Using space: Constellation

- visual encoding
 - link connection marks
 between words
 - link containment marks to indicate subgraphs
 - encode plausibility with horiz spatial position
 - encode source/sink for query with vert spatial position
- spatial layout
 - curvilinear grid: more room for longer low-plausibility paths

[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.] 42

a)

Using space: Constellation

- edge crossings
 - cannot easily minimize instances, since position constrained by spatial encoding
 - instead: minimize perceptual impact
- views: superimposed layers
 - dynamic foreground/background
 layers on mouseover, using color
 - four kinds of constellations
 - definition, path, link type, word
 not just 1-hop neighbors

[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.]

Considerations: Constellation

- another example of design motivated by analysis
 - -explicit discussion of choices using space
 - spatial position: highly constrained
 - tradeoffs
 - -information density vs spatial encoding semantics
 - » covered elsewhere: iterative refinement of layout [Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.]
 - -crossings: instances vs salience

Analysis example: Noack LinLog

- energy model designed to reveal clusters in data
 - -requires that edges between clusters longer than those within
 - visual encoding technique
 - using same minimization algorithms as previous work
- considerations
 - -also design motivated by prior analysis
 - explicit discussion of technique-level issues in GD literature
 - -encourage more papers like this!

[An Energy Model for Visual Graph Clustering. Noack. Proc. Graph Drawing 2003, p. 425--436.

Conclusions

Vis methods analysis framework

- characterize techniques in terms of methods for using space
 - marks and channels

-marks for nodes vs marks for links

• space channel: express, separate, order, align

-position, proximity, partitioning into groups

 general way to analyze visualizations systematically –applied to graph drawing examples in particular

Framework goals

- guide development of new algorithms/techniques
 –in same spirit as examples shown
 - Cerebral, Constellation, LinLog Energy
- characterize existing algorithms/techniques
 - -can guide adoption
 - in what context are they suitable?
 - -context here: previous design levels

Mapping upwards

- from algorithms to techniques
 - -sometimes trivial
 - discussion in paper itself
 - direct citation of previous work for framing context
 - -sometimes tricky indeed
 - when algorithm description does not facilitate analysis of resulting visual encoding
 - -use for space, or other channels
 - line between algorithm and technique can be blurry

 does new algorithm support existing technique, or new one?
 xtrivial when speed increase for identical visual results
- from techniques to abstractions to domain problems –equally important questions, but beyond scope for today...

Framework goals

- guide development of new algorithms/techniques
 - -in same spirit as examples shown
 - Cerebral, Constellation, LinLog Energy
- characterize existing algorithms/techniques
 - -can guide adoption
 - in what context are they suitable?
 - -context here: previous design levels
- vis methods analysis only one possible route!
 many others
 - benchmarks, computational complexity, user studies...

More information

- this talk <u>http://www.cs.ubc.ca/~tmm/talks.html#gd13</u>
- more on analysis
 - -techniques/methods in more depth
 - -also, principles and abstractions!
 - single chapter in 2009 Fundamentals of Graphics textbook Visualization

http://www.cs.ubc.ca/~tmm/papers.html#akpchapter

full vis textbook: to appear, 2014, AK Peters

 Visualization Analysis and Design:
 Principles, Abstractions, and Methods