Dimensionality Reduction From Three Angles

Tamara Munzner

Outline

Department of Computer Science University of British Columbia

2014 SIAM Data Mining Workshop on Exploratory Data Analysis

can we design better DR algorithms? -algorithm for GPU MDS: Glimmer

-(algorithm for MDS with costly distances: Glint)

• can we build a DR system for real people?

• how should we show people DR results?

http://www.cs.ubc.ca/~tmm/talks.html#eda14

Dimensionality Reduction

- · what is it?
- -map data from high-dimensional measured space into lowdimensional target space
- when to use it?
- -when you can't directly measure what you care about
- true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
- · latent factors, hidden variables
- what's the goal?
- -improve performance of downstream algorithm
 - · avoid curse of dimensionality
- -data analysis
- if look at the output: visual data analysis

MDS: Multidimensional Scaling

DR Example

Measurement

9 Dimensional

Measured Space

Tumor

Data

- · entire family of methods, linear and nonlinear
- · classical scaling: minimize strain
- -Nystrom/spectral methods: O(N)
- Landmark MDS [de Silva 2004], PivotMDS [Brandes & Pich 2006]

1.00

Glint: An MDS Framework for Costly Distance Functions.

Ingram, Munzner. Proc. SIGRAD 2012.

DR

Malignant

Benign

2 Dimensional

Target Space

- -limitations: quality for very high dimensional sparse data
- distance scaling: minimize stress
- -nonlinear optimization: O(N2)
 - SMACOF [de Leeuw 1977]
- -force-directed placement: O(N2)
- Stochastic Force [Chalmers 1996]
- · limitations: quality problems from local minima

http://www.cs.ubc.ca/labs/imager/tr/2012/Glint/

- Glimmer goal: O(N) speed and high quality

An MDS Framework for Costly Distance Functions

Glimmer Strategy

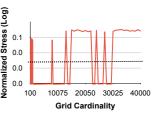
Angles of Attack

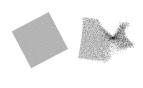
· invent algorithms

evaluate/validate all of these

benefits of multiple angles

-outcomes cross-pollinate


-parallax view of what's important


· build systems

• Stochastic force alg suitable for fast GPU port -but systematic testing shows it often terminates too soon

design tools to solve real-world user problems

create taxonomies to characterize existing things

• Use as subsystem within new multilevel GPU alg with much better convergence properties

Sparse Dataset (docs): N=D=28K

- -quality higher
- -speed equivalent

2.17 s stress=0.928

stress=0.157

Methods and Outcomes

Glimmer

ioint work with: Stephen Ingram, Marc Olano

Multilevel MDS on the GPU

http://www.cs.ubc.ca/labs/imager/tr/2008/gli

- methods
 - -quantitative algorithm benchmarks: speed, quality
 - systematic comparison across IK-I0K instances vs a few spot

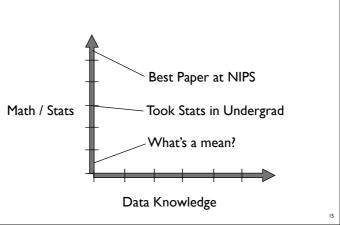
Glimmer: Multilevel MDS on the GPU

Ingram, Munzner, Olano. IEEE TVCG 15(2):249-261, 2009

- -qualitative judgements of layout quality
- outcomes
- -characterized kinds of datasets where technique yields quality improvements
- then what?
- -saw what real users could do with it after release identified limitations

Outline

- · can we design better DR algorithms?
- -next: how do we get people to use DR properly? -move emphasis from solo algorithms to entire system
- can we build a DR system for real people?
- -system that provides guidance: DimStiller
- how should we show people DR results?


Who Might Use DR?

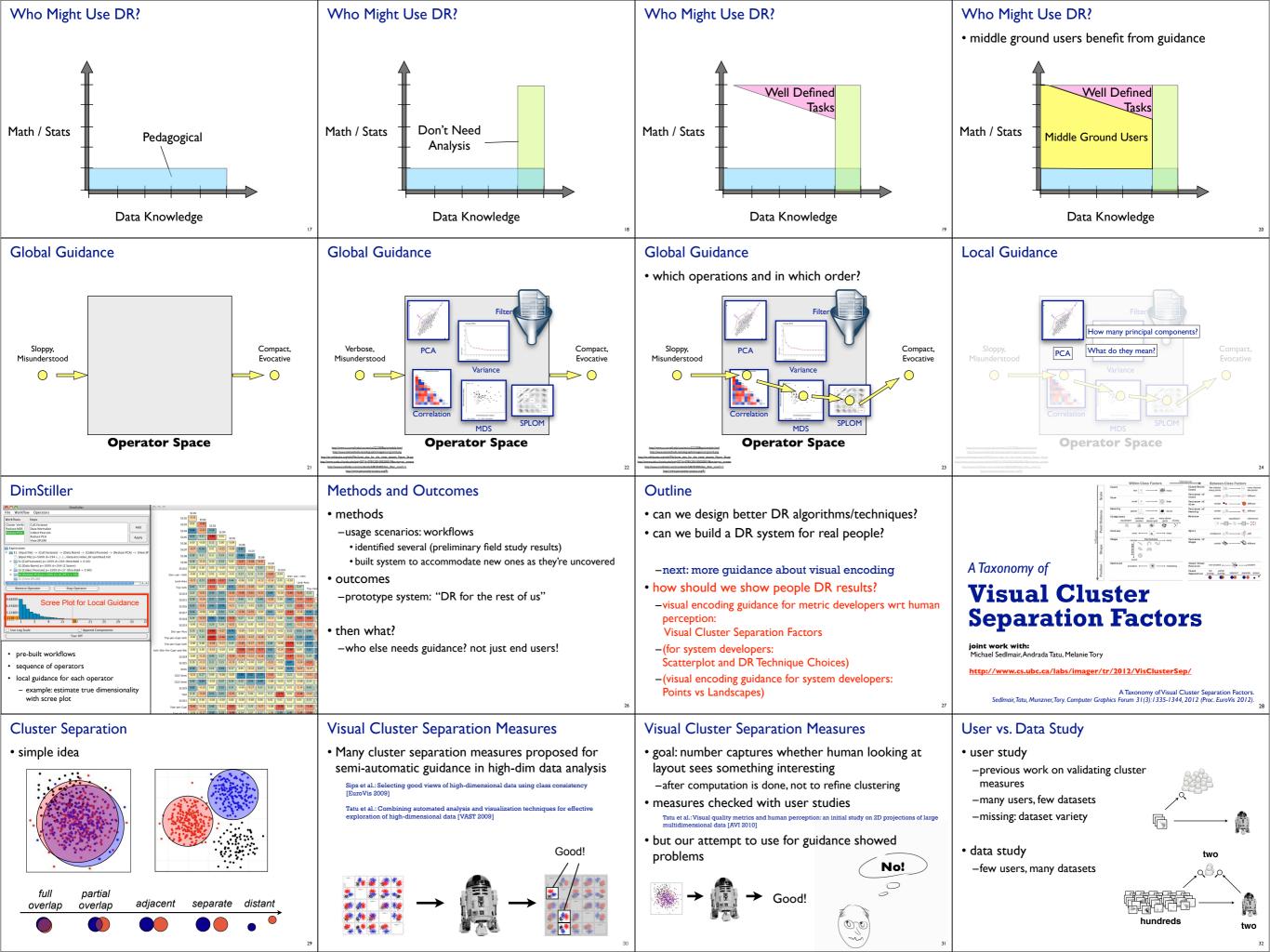
• DR in the Wild revealed broad set of users Math / Stats Data Knowledge

Who Might Use DR?

Glint

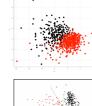
Stephen Ingram

Who Might Use DR?



DimStiller

Workflows for Dimensional Analysis and Reduction Stephen Ingram, Veronika Irvine, Melanie Tory, Steven Bergner, Torsten Möller


http://www.cs.ubc.ca/labs/imager/tr/2010/DimStiller/

DimStiller:Workflows for dimensional analysis and reduction. Ingram, Munzner, Irvine, Tory, Bergner, Moeller. Proc. VAST 2010, p 3-10.

816 Dataset Instances

- 75 datasets
- -31 real, 44 synthetic
- -pre-classified
- 4 DR methods
- -PCA
- -Robust PCA
- -Glimmer MDS
- -t-SNE
- 3 visual encoding methods
- -2D scatterplots, 3D scatterplots, 2D SPLOMs
- -color-coded by class

Analysis Approach

- · qualitative method out of social science: coding
- -open coding: gradually build/refine code set
- -axial coding: relationships between categories Charmaz, K. Constructing Grounded Theory: A Practical Guide through Qualitative Analysis. 2006.
- Furniss, D., Blandford, A., Curzon, P. and Mary, Q. (2011). Confessions PhD: experiences and lessons learnt. Proc. ACM CHI 2011, p 113-122.
- evaluating the measures
- -metric aligns with human judgement?
- -if not: what are the reasons?

Relevant Taxonomy Factors

- building taxonomy of factors from reasons
- mapping measure failures onto taxonomy

Centroid: Mapping Assumptions Into Taxonomy

A Taxonomy of Cluster Separation Factors

· centroid only reliable if

- -round-ish clusters
- -not more than one dense spot

/ n ni 0 0

 \bigcirc

- -similar sizes & number of points
- · rarely true for real datasets

Methods and Outcomes

- methods
 - -qualitative data study

High-Level Results

Failure cases

Only real (296)

False Positives

False Negatives

All failure cases

AII (816)

- we encourage more work along these lines
- - -taxonomy to understand current problems

 - -taxonomy to advise future development
 - measures, techniques, systems
- then what?
- -from how to help them do DR better to understanding when they need to do it at all

Outline

- · how can we design better DR algorithms/techniques?
- · how can we build a DR system for real people?
- how should we show people DR results?
- -elsewhere: continue figuring out what people need
- (when do people need to use DR?)

Work in Progress

- DR in the Wild
- -multi-year cross-domain qualitative field study
- DR for journalism
- -Overview project http://overview.ap.org
- -funded by Knight Foundation, collaboration with Stray@AP
- starting point: Glimmer meets WikiLeaks
- -led us to identify and address more unmet real-world analysis needs
- new technique developed, deployed, adopted
- · ending point: stay tuned...

Centroid Failure Example

Empirical Guidance on

• big classes overspread small ones

Red: **77 (Good)**

equidated sandon dense part pods chrosy

Data: Gaussian, synthetic DR: MDS

Spatialization Design

Comparing Points and Landscapes ioint work with:

Melanie Tory, David W. Sprague, Fuqu Wu, Wing Yan So

me.cs.uvic.ca/~mtory/publications/infovis2007.pdf

Spatialization Design: Comparing Points and Landscapes. Tory, Sprague, Wu, So, and Munzner. IEEE TVCG 13(6):1262–1269, 2007 (Proc. InfoVis 07).

Conclusions

Michael Sedlmair, Melanie Tory

- cross-fertilization from attacking DR through different methodological angles
- -scratching own itches to find high-impact problems

Scatterplot and Dimension Reduction

Technique Choices

http://www.cs.ubc.ca/labs/imager/tr/2013/ScatterplotEval/

- outcomes of evaluation informs how to build
- grappling with issues of building informs what studies to run

Empirical Guidance on Scatterplot and Dimension Reduction Technique Choices. SedImair, Munzner, Tory. IEEE TVCG 19(12):2634-2643 (Proc. InfoVis 2013).

- taxonomy creation informs what to build: unsolved problems
- finding mismatches
- -between principles and practice
- -between practice and needs
- need parallax view of principles, practices, and needs!

Thanks and Questions

- · further info
- this talk: http://www.cs.ubc.ca/~tmm/talks.html#eda14
- long version: http://www.cs.ubc.ca/~tmm/talks.html#utah13
- http://www.cs.ubc.ca/group/infovis
- papers, videos, open-source software (including Glimmer and DimStiller)
- acknowledgements
 - funding: NSERC Strategic Grant
 - joint work: all collaborators
 - Steven Bergner, Matthew Brehmer, Stephen Ingram, Veronika Irvine, Torsten Möller, Marc Olano, Michael Sedlmair, Andrada Tatu
 - feedback on this talk
 - Matthew Brehmer, Joel Ferstay, Stephen Ingram, Torsten Möller, Michael Sedlmair, Jessica
- hiring opportunity
- Stephen Ingram (DimStiller, Glimmer, Glint) will finish postdoc soon - http://www.cs.ubc.ca/~sfingram
- available for hacker-analyst job in industry or research lab
- in fall 2014 after postdoc