High Dimensionality I

Manifold Methods

Talk Overview

- Define Concepts and Problems
- Paper I: Charting A Manifold by Matthew Brand
- Paper 2: Maximum Likelihood Estimation of Intrinsic Dimension by Elizaveta Levina and Peter J. Bickel
- Discussion

Common Scientific Problem

Make N observations

 Make a series of M measurements per observation

Common Scientific Problem

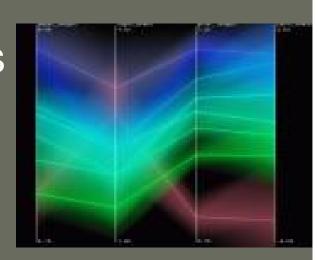
Make N observations

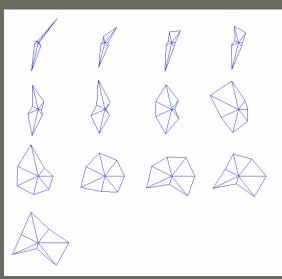
 Make a series of M measurements per observation

NOW WHAT?

Visualization

- Directly Visualize Dimensions
 - Parallel Coordinates
 - Glyphs
 - Star Coordinates
 - Etc.





Problem: Hidden Factors

True Dimensionality < Measured Dimensionality

Example

Rotating head

Large Number of Measured Dimensions

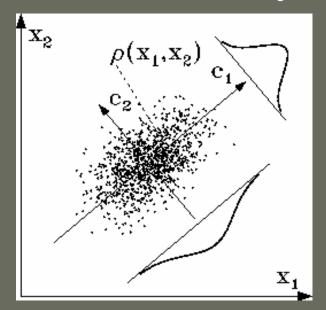
Low Number of "Intrinsic" Dimensions

Solution: Dimensionality Reduction

Find the true dimensionality

PCA – Find Largest Axes of Variability

And Construct a Plane x2

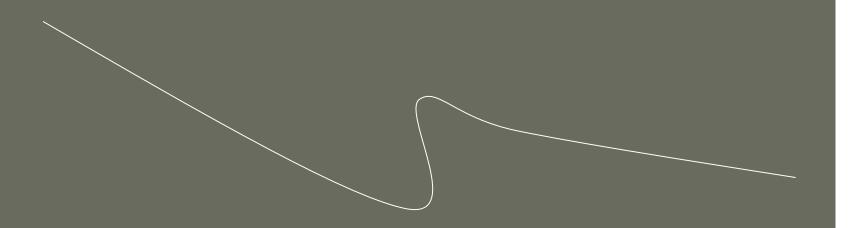


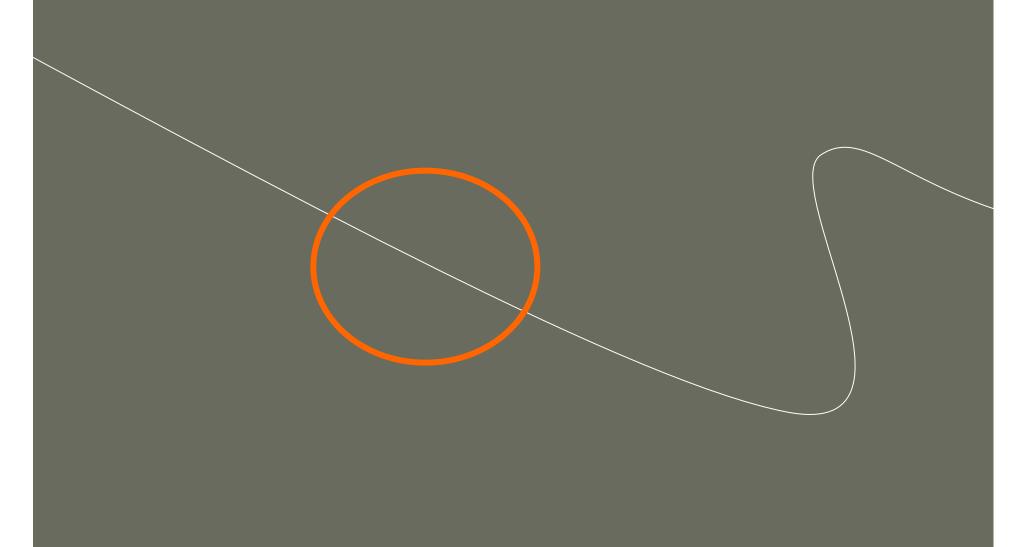
MDS – Embed points based on Distances

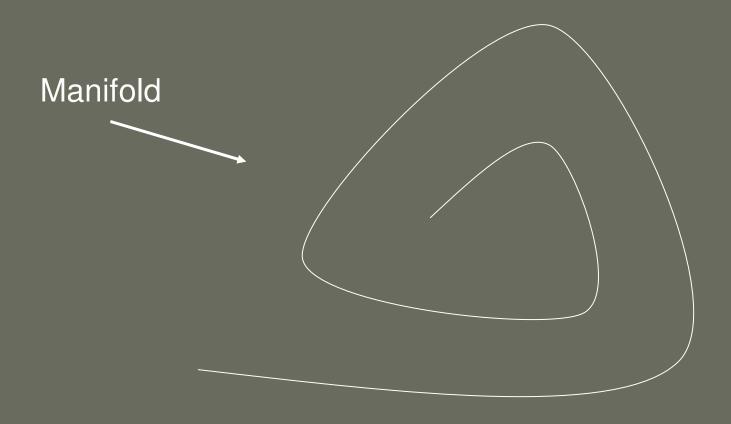
Problem

MANIFOLDS

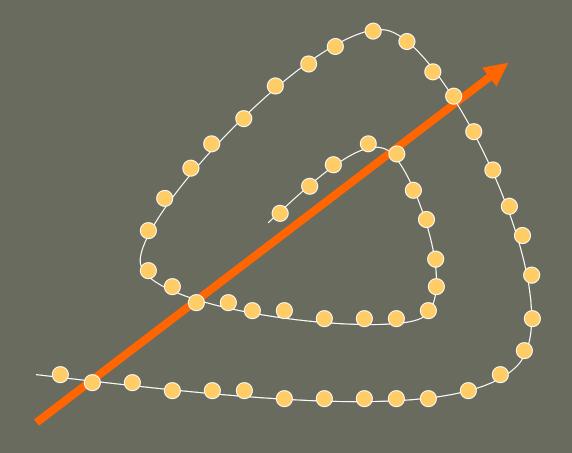
 A topological space that looks locally like the Euclidean space Rⁿ



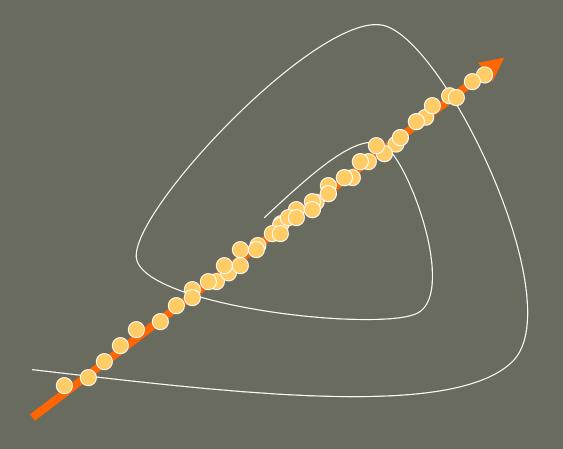


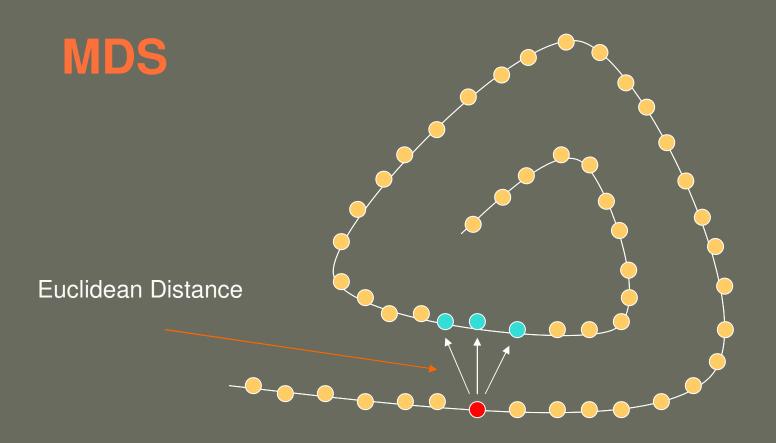


PCA

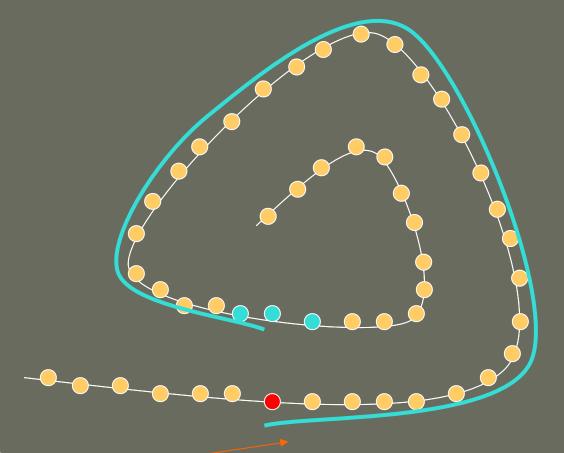


PCA

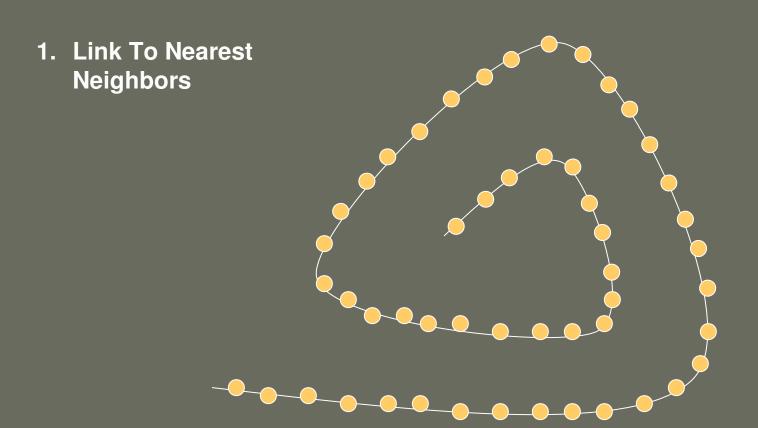


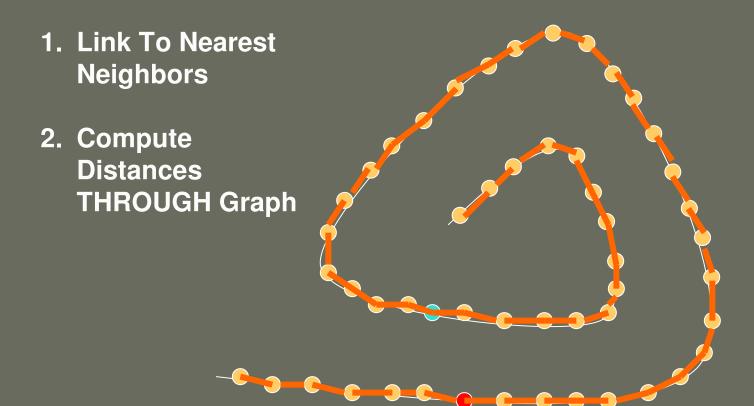


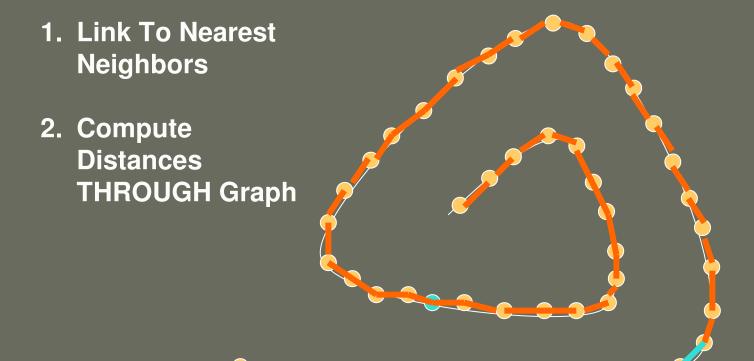
MDS

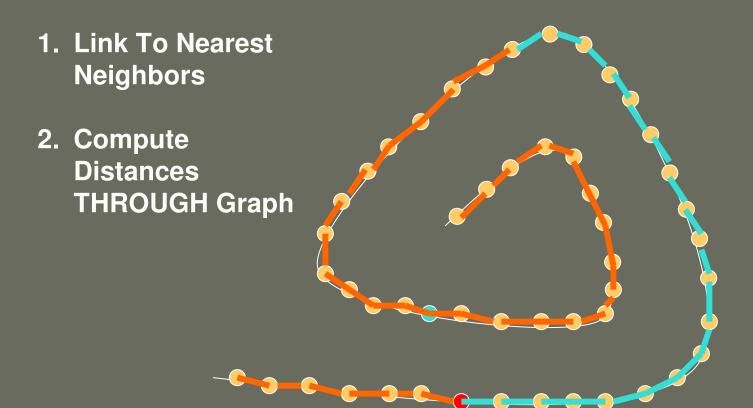


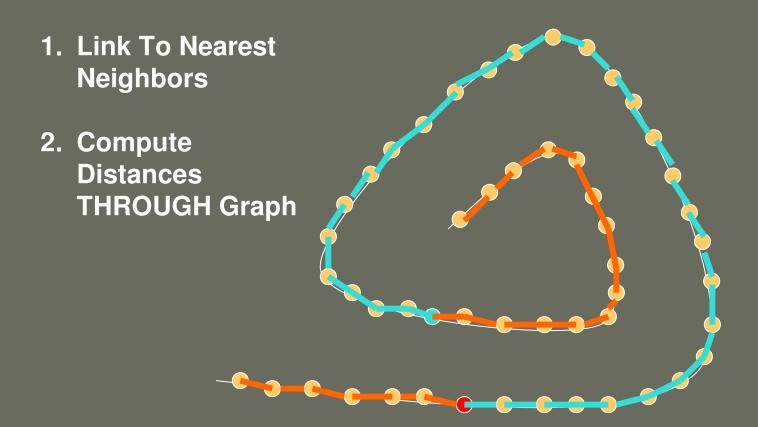
"Real" Distance









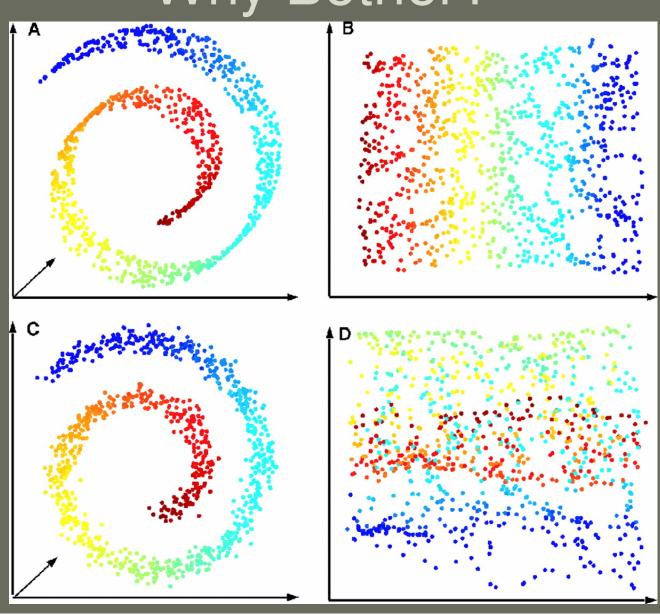


- 1. Link To Nearest Neighbors
- 2. Compute
 Distances
 THROUGH Graph
- 3. Perform MDS

Paper I: Charting a Manifold

Matthew Brand

Why Bother?



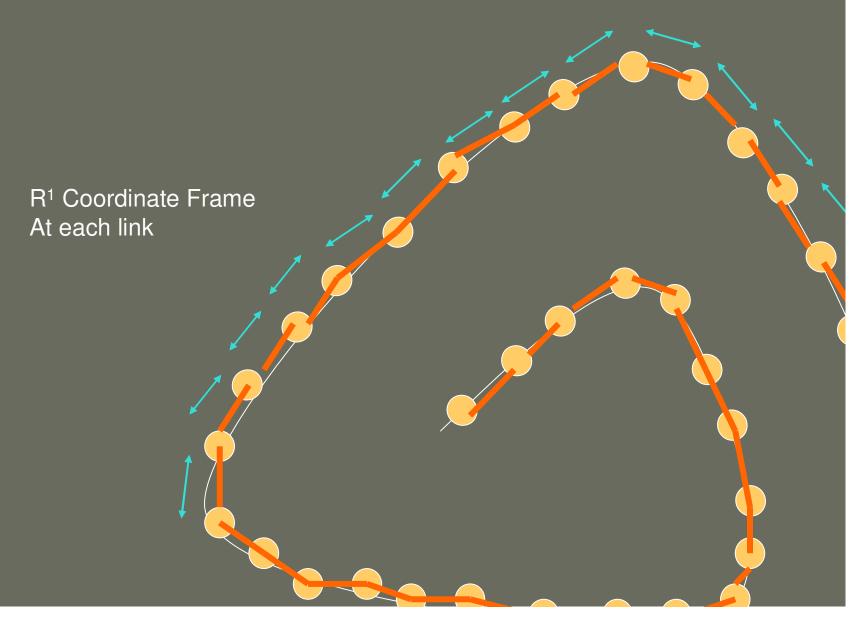
What's Going On?

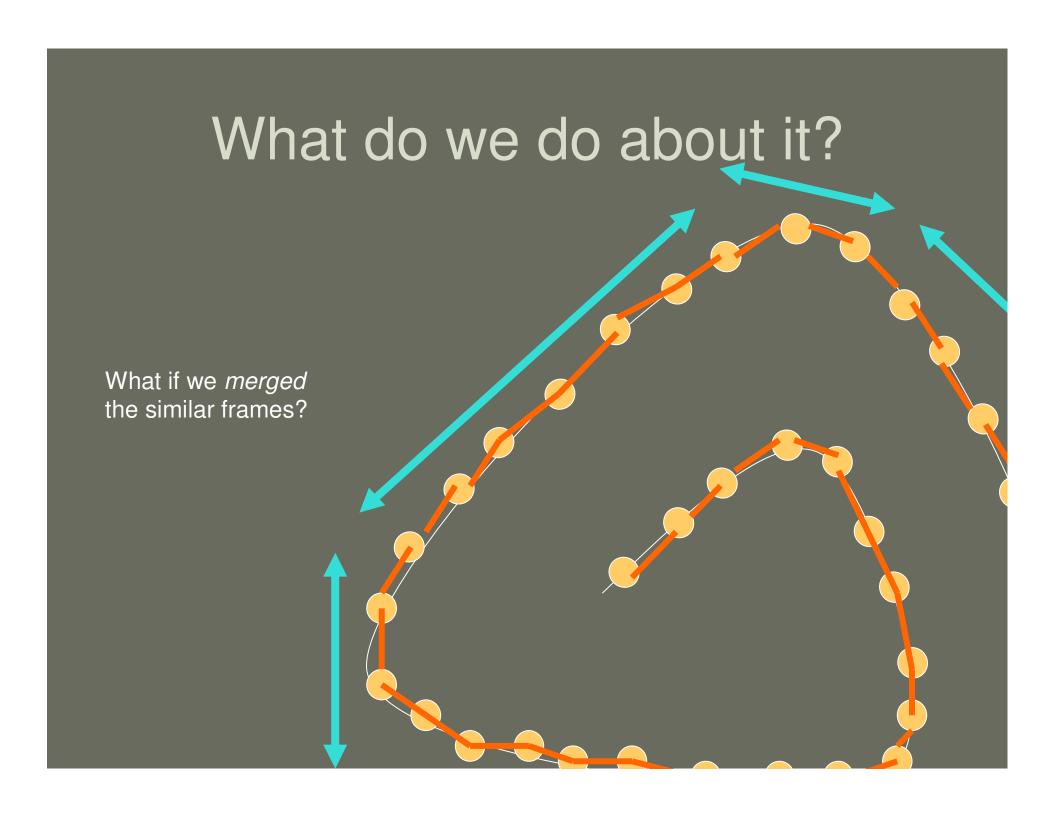
 Isomap depends on the integrity of the local structure of the manifold

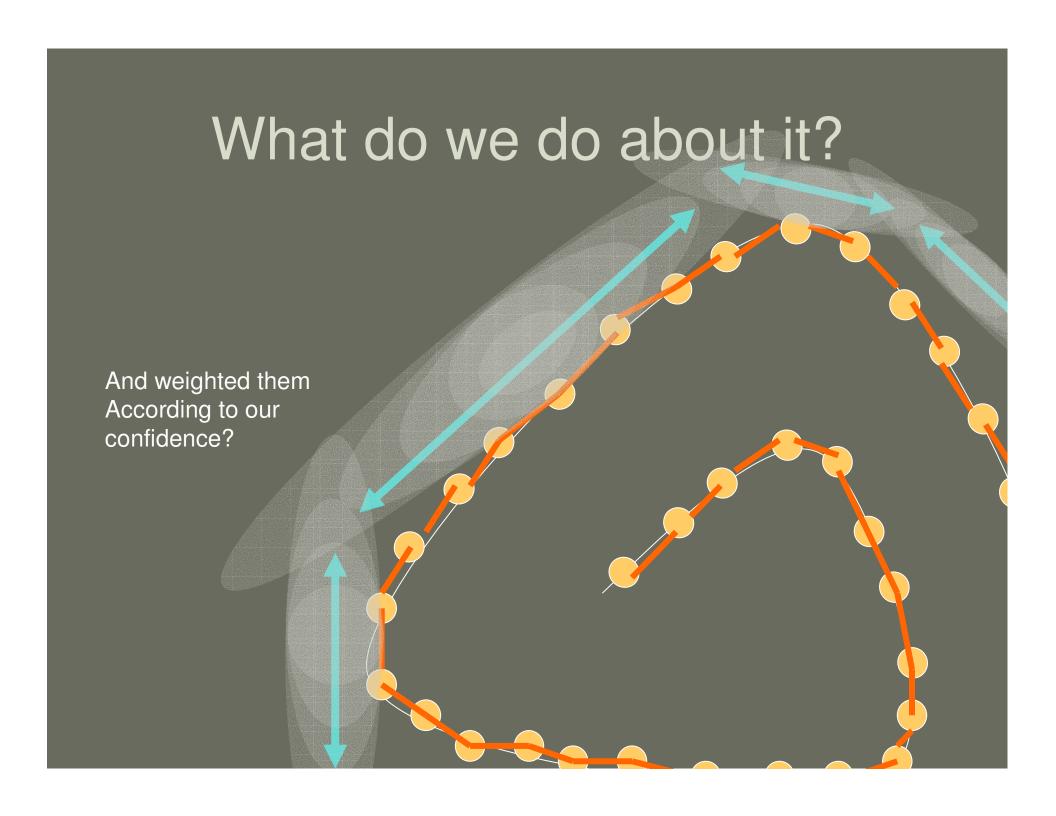
Noise perturbs the structure leading to an incorrect embedding.

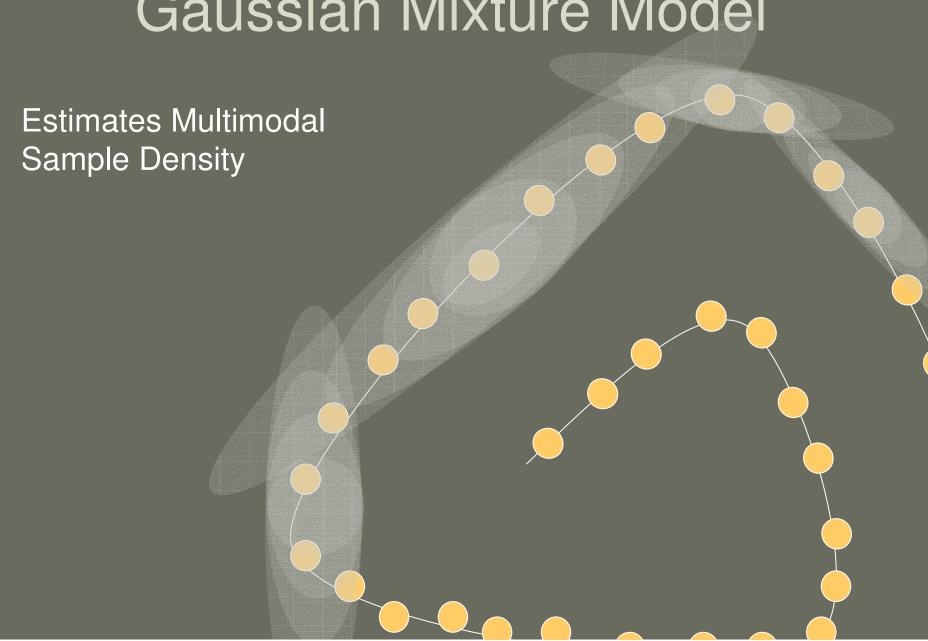
What do we do about it?

What do we do about it?



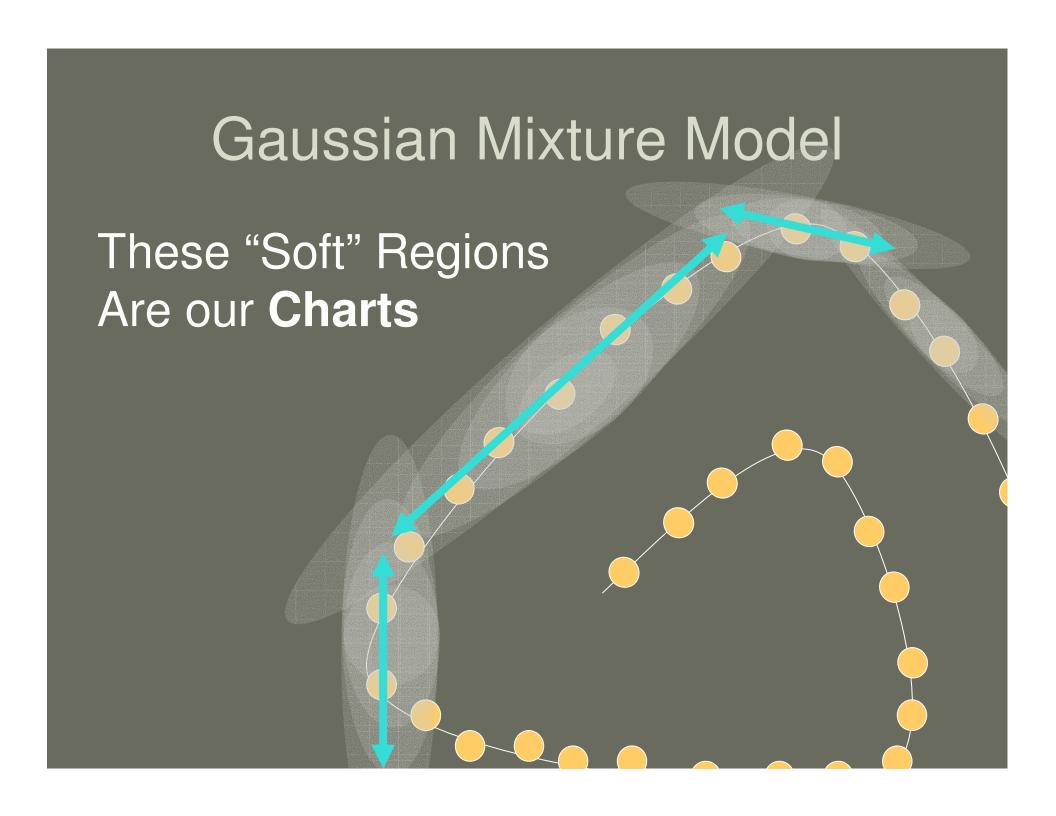


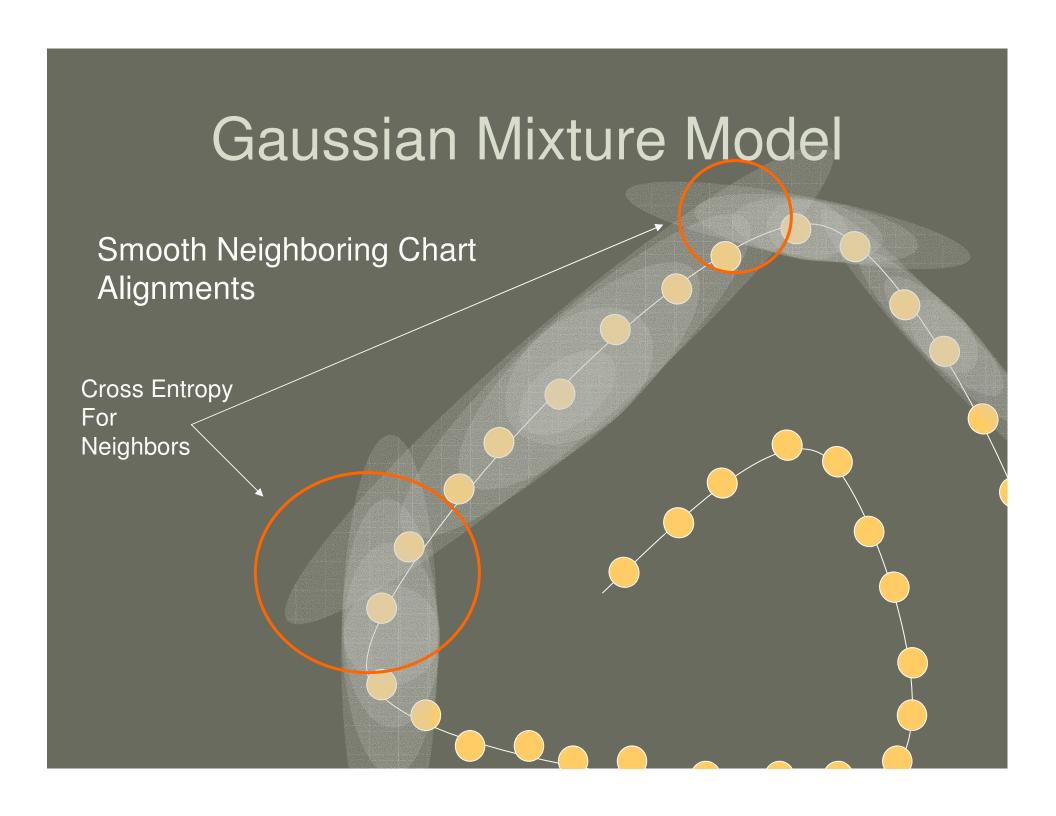




Estimates Multimodal Sample Density

Derive Coordinate Frame From Eigenvectors Of Distribution

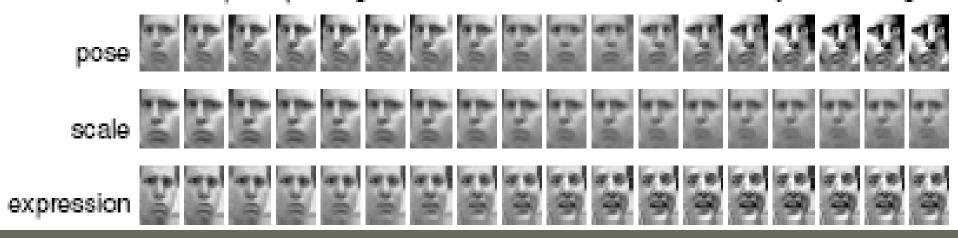




Semi-Invertable Transform

A transformation to and from the manifold

Three principal degrees of freedom recovered from raw jittered images



 Interpolate on the manifold and "backproject" to original sample space

Critique

GOOD

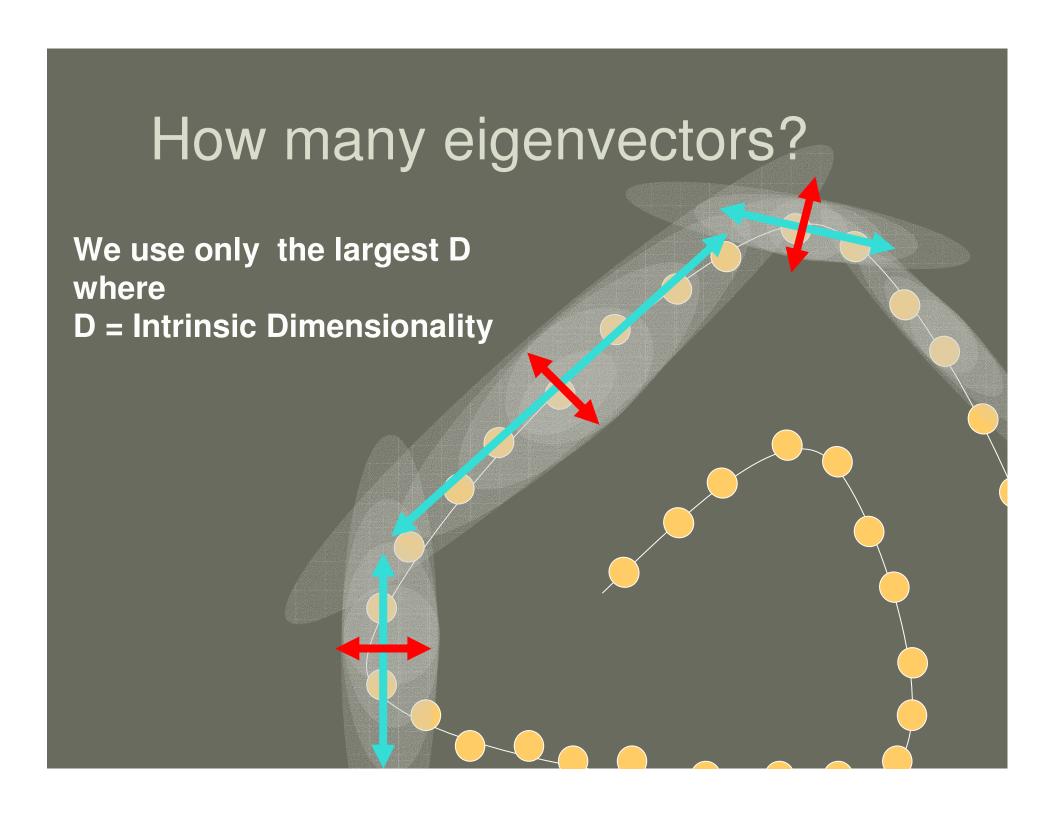
- Elegant, robust idea solves shortcomings of former methods
- Lots of novel examples to prove utility
- Backprojection provides visualization opportunities

BAD

- Little appeal to intuition
- No Code
- Runtimes? How does it scale?

Paper II: Maximum Likelihood Estimation of Intrinsic Dimension

Elizaveta Levina and Peter J. Bickel



How do we get D?

Most often = User makes a guess

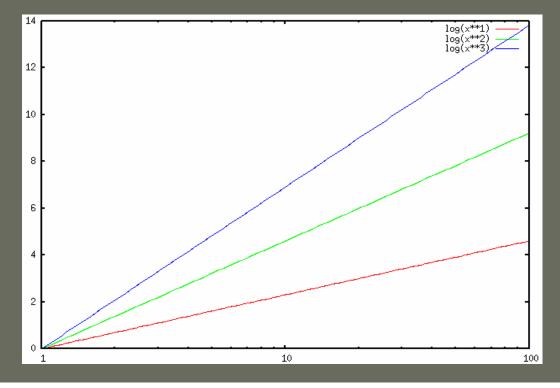
Use an estimation method

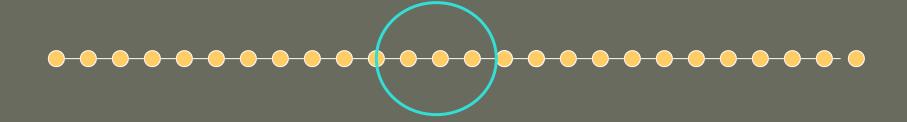
Projection Methods (PCA, local PCA)

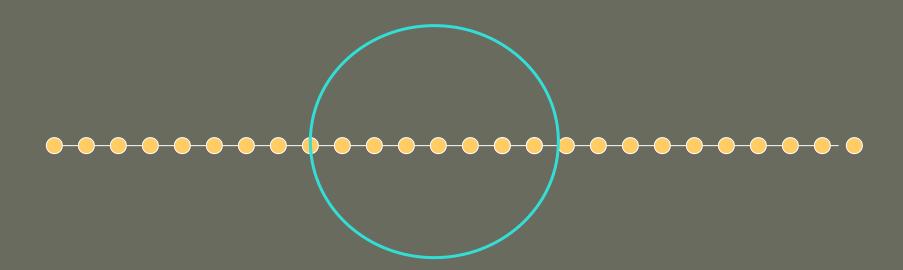
Geometric Methods

Geometric Methods

- C(r) = average number of points in radius r
 for each point in dataset
- Plot log(C(r)) against log(r)
- D = slope



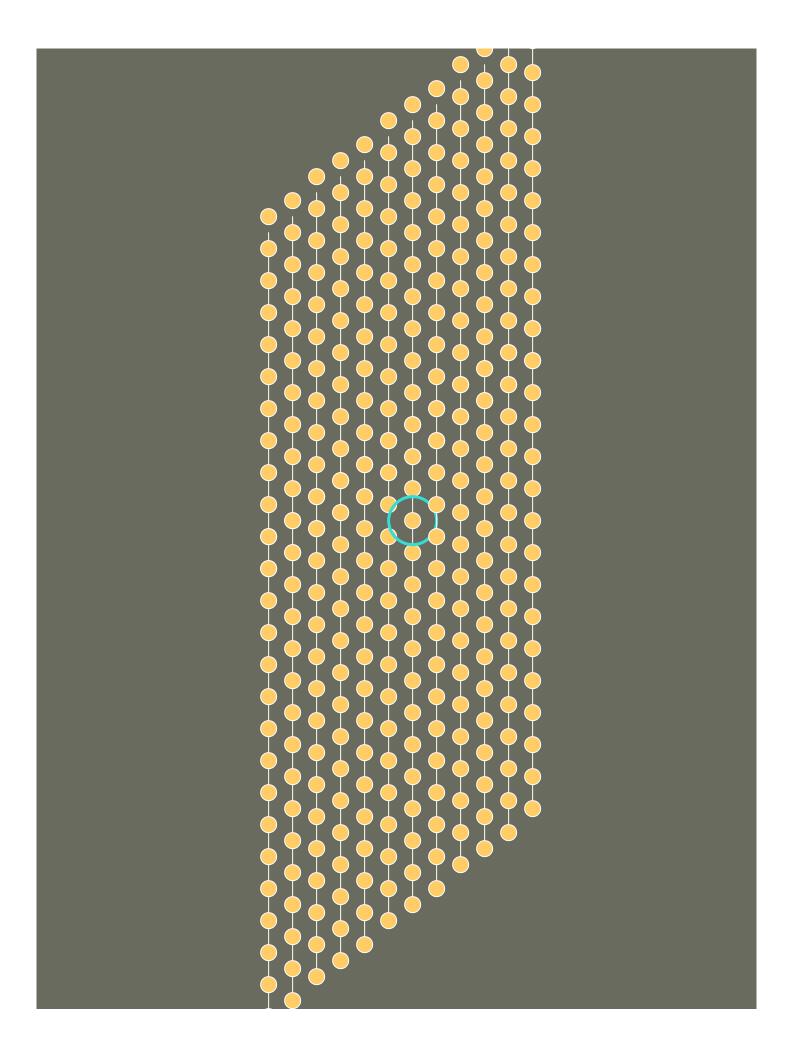


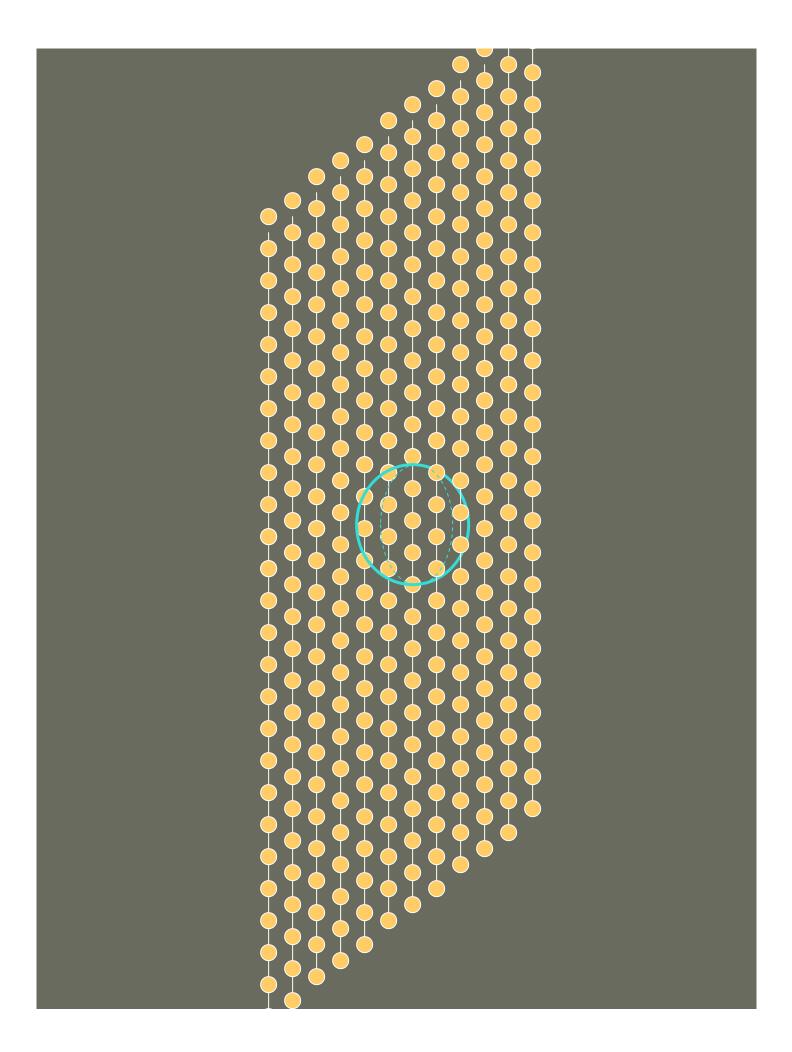


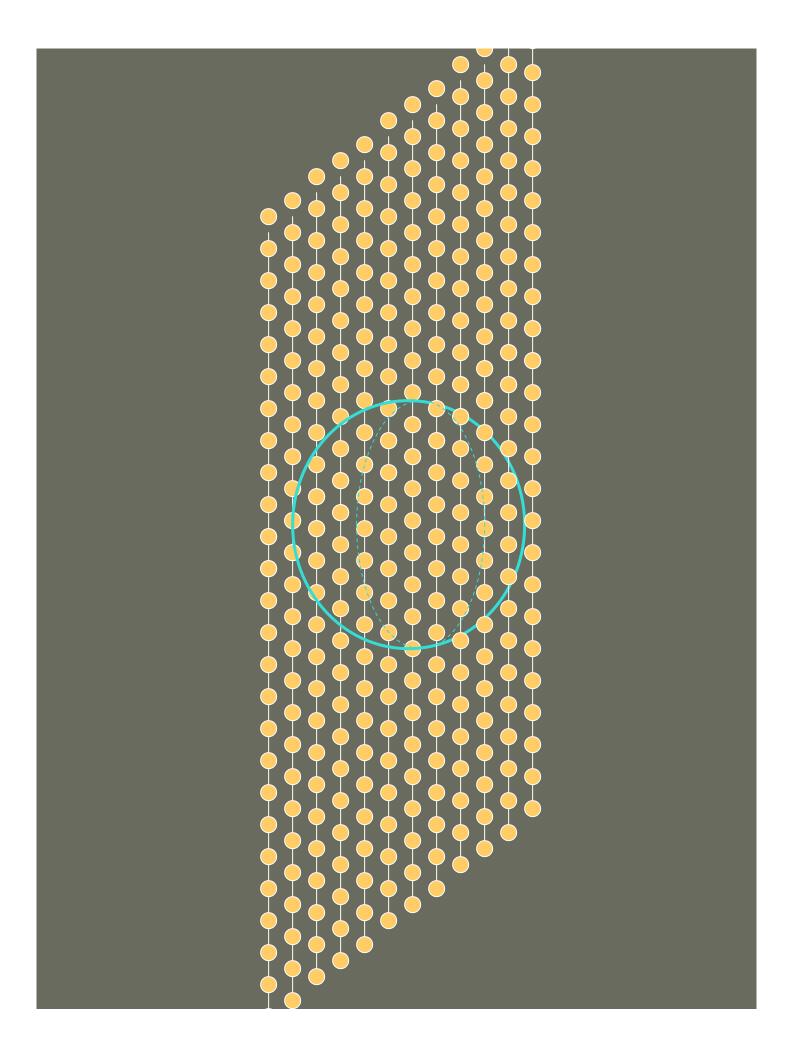
C(r) grows like x

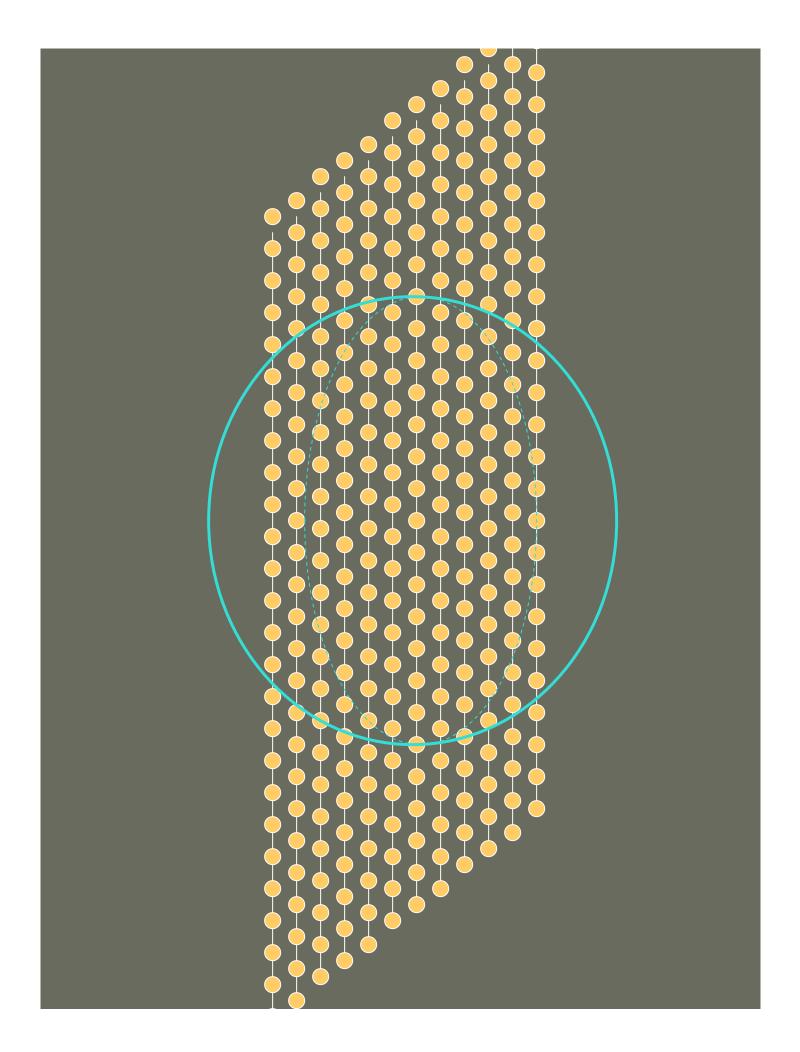
C(r) grows like x

Log(x)/log(x) = 1

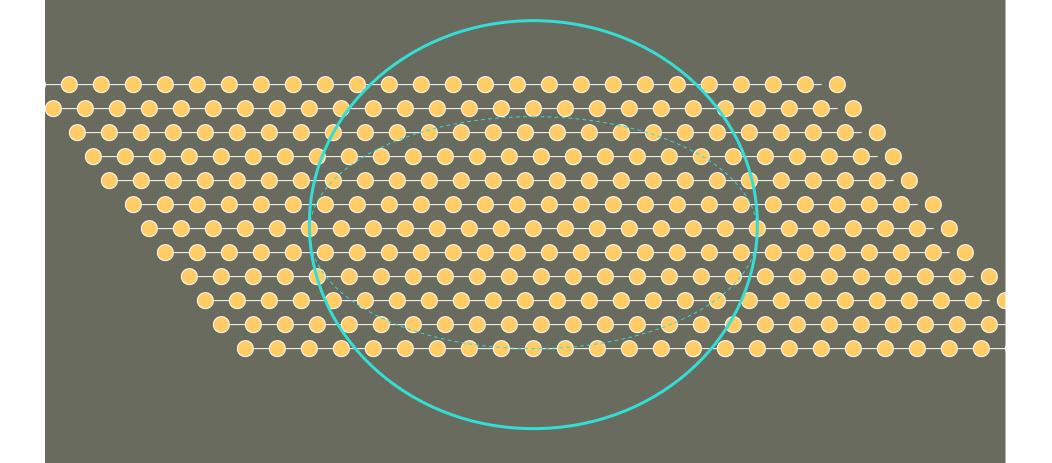








C(r) grows like x²



$$Log(x^2)/log(x) = 2$$

This is called the correlation dimension

How well does this work?

Issues

We don't know the effect of

Sample Size

Dimension

We also don't understand bias or variance

Strategy of Paper II

- Define a stochastic process to model observations in sphere for some low dimensional density.
- Define a MLE for the dimension parameter of the process.
- Examine statistical properties of the estimator.

Step 1: Define the Process

 N(t,x) = number of points in a sphere of radius t around point x

We approximate this with a Poisson process

The rate of this process depends on D!

Step 2: Define the MLE

- MLEs infer values of parameters of underlying process.
- Build an MLE for D

$$\left[\frac{1}{k-1} \sum_{j=1}^{k-1} \log \frac{T_k(x)}{T_j(x)}\right]^{-1}$$

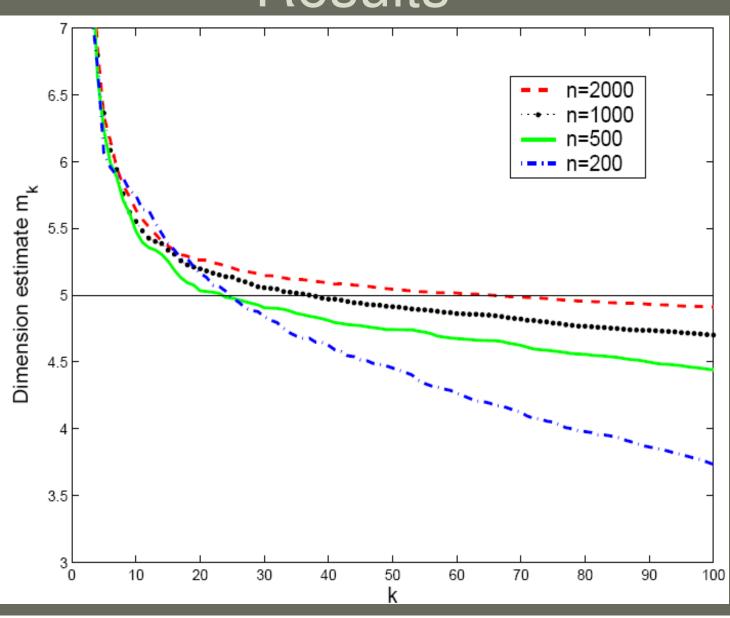
- Average over all points
- Average over a range of k

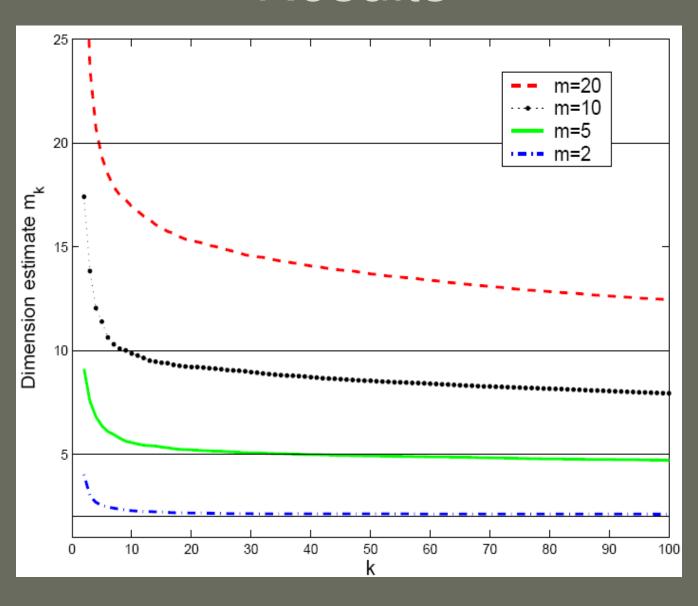
Step 3: Discuss Properties of MLE

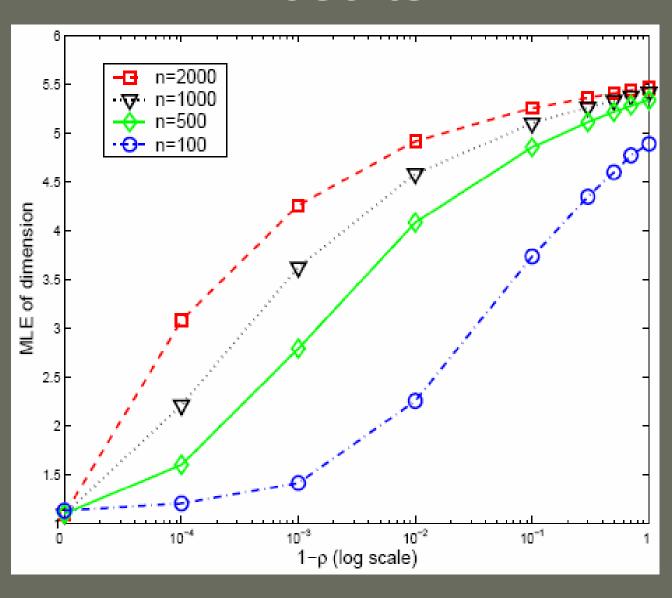
Expected value of MLE = D

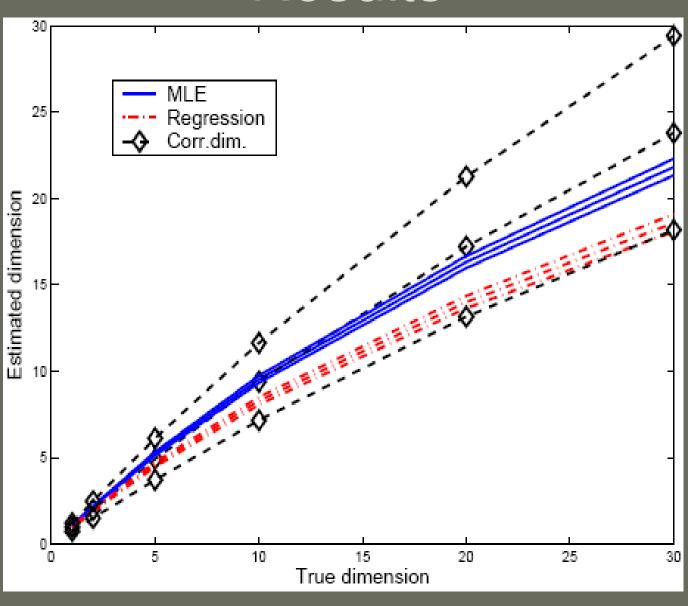
• Variance = $D^2/(k-3)$

These are asymptotic for k and sample size









Critique

GOOD

- Provides a well-defined tool for estimating dimensionality
- Suitable for dimensions appropriate for visualizing

BAD

- Written by Statisticians
- Absolutely no appeal to intuition
- No geometric description of Estimator!

Questions?