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� A. Morrison, G. Ross, and M. Chalmers. Fast 
multidimensional scaling through sampling, 
springs and interpolation. In Information 
Visualization, pages 68-77, 2003.

� F. Jourdan and G. Melançon. Multiscale
hybrid MDS. In Intl. Conf. on Information 
Visualization (London), pages 338-393, 2004.

� well written, clear, appropriately detailed
� High-dim and MDS can be complicated
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� Mapping high-dimensional data to 2D space
� Could be done many different ways
� Different techniques satisfy different goals
� Familiar example - projection of 3D to 2D 

preserves geometric relationships
� Abstract data may not need that
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� Display multivariate abstract point data in 2D
� Data from bioinformatics, financial sector, etc.
� No inherent mapping in 2D space
� p-dim embedding of q-dim space (p < q) where inter-object 

relationships are approximated in low-dimensional space

� Proximity in high-D -> proximity in 2D
� High-dim distance between points (similarity) determines 

relative (x,y) position
� Absolute (x,y) positions are not meaningful

� Clusters show closely associated points
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� Eigenvector analysis of N x N matrix – O(N3)
� Need to recompute if data changes slightly

� Iterative O(N2) algorithm – Chalmers,1996
� This paper –
� Next paper – O(N log N)

)( NNO
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� Proximity data
� In social sciences, geology, archaeology, etc.
� E.g. library catalogue query – find similar points

� Multi-dimensional scatterplot not possible

� Want to see clusters, curves, etc.
� Features that stand out from the noise

� Distance function
� Typically use Euclidean distance – intuitive



���	���������

� Used instead of statistical techniques (PCA)
� Better convergence to optimal solution
� Iterative – steerable – Munzner et al, 2004

� Good aesthetic results – symmetry, edge 
lengths

� Basic algorithm – O(N3)
� Start: place points randomly in 2D space
� Springs reflect diff btwn high-D and 2D distance
� #iterations required is generally O(N)
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� Approximate solution works well
� Caching, stochastic sampling – O(N2)

� Perform each iteration in O(N) instead of O(N2)
� Keep constant-size set of neighbours
� Constants as low as 5 worked well

� Still only worked on datasets up to few 1000s
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� Diff clustering algorithms have diff strengths
� Kohonen’s self-organising feature maps (SOM)
� K-means iterative centroid-based divisive alg.

� Hybrid methods have produced benefits
� Neural networks, machine learning literature
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� Start: run spring model on subset of size
� Completes in O(N)

� For each remaining point:
� Place close to closest ‘anchor’
� Adjust by adding spring forces to other anchors

� Overall complexity 

N
))(( NNO ⋅
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� 3-D data sets: 5000 – 50,000 points
� 13-D data sets: 2000 – 24,000 points
� Took less than 1/3 the time of the O(N2)
� Achieved lower stress when done
� Also compared against original O(N3) model

� 9 seconds vs. 577; and 24 vs. 3642
� Achieved much lower stress (0.06 vs. 0.2)
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� Hashing
� Pivots – Morrison, Chalmers, 2003

� Achieved 

� Dynamically resizing anchor set
� Proximity grid

� Do MDS, then transform continuous layout into 
discrete topology

)( 4 NNO
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� Multiscale hybrid MDS
� Extension of previous paper
� Achieves O(N log N) time complexity
� Good introduction of Chalmers et al papers
� Like Chalmers, begins by embedding subset 

S of size N
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� Select constant-size subset 
� For each p in P create sorted list Lp

� For each remaining point u, binary search Lp
for point up as distant from p as u is
� Implies that u and up are very close

� Place u according to location of up

SP ⊂
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� Chalmers et al is better for N < 5500
� Main diff is in parent-finding, represented by Fig. 3
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� Experimental study confirms theoretical results
� This technique becomes better for N > 70,000
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� MDS theory uses stress to objectively determine 
quality of placement of points

� Subjective determinations can be made too
� 2D small world network example (500 – 80,000 nodes)
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� Recursively defining the initial kernel set of points 
can yield much better real-time performance
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� Series of results yielding progressively better 
time complexities for MDS

� 2D mappings provide good representations
� Further examination of multiscale approach
� User-steerable MDS could be fruitful


