Zooming/Navigation

Mike Cora

November 30, 2005

533C: Information Visualization

Two Zooming/Navigation Problems

- First paper tackles clutter when zooming, by maintaining constant information density
- Second paper attempts to address context loss when zooming in, but completely ignores (and abuses) information density

Constant Information Density in Zoomable Interfaces

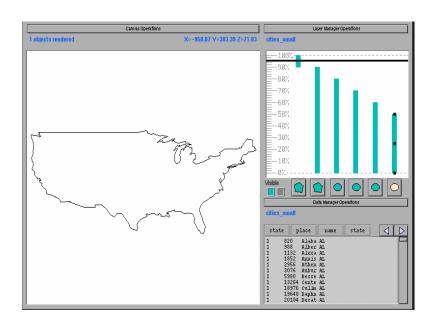
Allison Woodruff, James Landay, Michael Stonebraker

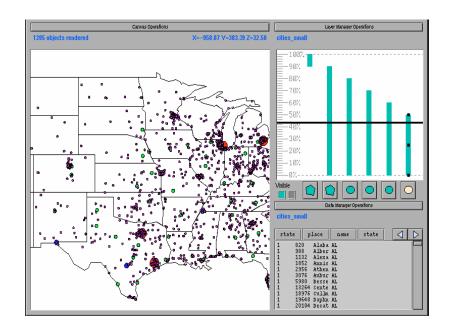
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Berkeley, CA 94720 USA

E-mail: {woodruff,landay,mike}@cs.berkeley.edu


Problem Domain


- Zooming in or out changes the effective area displayed on screen, changing the number of visible objects
- Reducing density in multi-scale data (ie. maps) has been shown to improve performance and visual appeal
- Well-formed applications conform to the Principle of Constant Information Density (cartographic literature).
- To maintain constant information density at all zoom levels:
 - □ Show more object information when zooming in
 - □ Show more objects when zooming in
 - Opposite when zooming out: reduce information, aggregate objects

DataSplash

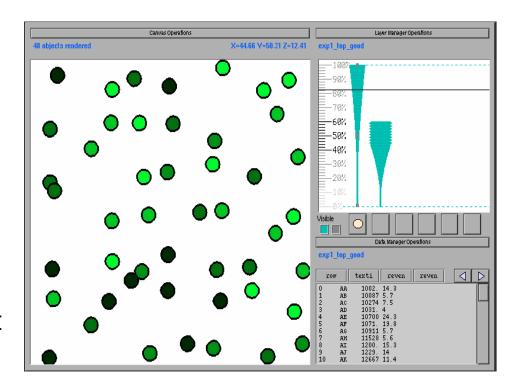
- DataSplash database visualizer:
 - Create interactive zoomable interfaces
 - Associate object representation per layer
 - □ Objects change representation as elevation is zoomed in/out

DataSplash Details

- Visual objects associated with rows of the table
 - x,y coordinates pulled from the table (ie. longitude, latitude, but not limited to map data).
 - generate a scatter plot per layer.
- Each object is part of one layer, each layer is associated with one database table.
- Interactively assign visibility of layers depending on elevation
 - □ Resize and move the layer visibility bars

DataSplash Details

- Associate columns of table with different display properties
 - ☐ Height, width, radius, colour, rotation
- Portals, or windows into other canvases:
 - □ ie. City objects have portals into the city's map
 - Portal history allows going back and forth between canvases


Problems with DataSplash

- Difficult to create visualizations with appropriate density and details at all elevations
- Process is time consuming, since all elevation layers must be manually verified whenever a change is introduced
- No feedback on information density

Improved DataSplash

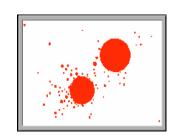
- Provides density feedback at all layers and elevations
- Note the parabolic shape of the density, due to the quadratic relation between zoom and displayed area
- Tick mark colouring represents the aggregate density of all layers.
- Application extensions for custom density measurement functions.

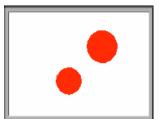
Visual Feedback of Density

- Interacting with the layer visibility bars
 - automatically changes their width, reflecting their density at the new elevation levels
 - updates the ticks' colour, showing aggregate density
- Joining or aggregating table rows in a layer also updates the bars and ticks, communicating the new density
- Teaches users about the relationship between zooming and number of visible objects

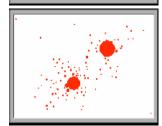
Semi-Automated Layer Density

- User drags sides of layer bar
- System applies several density modification functions to layer that fulfill requested density target
- Presents resulting canvases to the user through portals

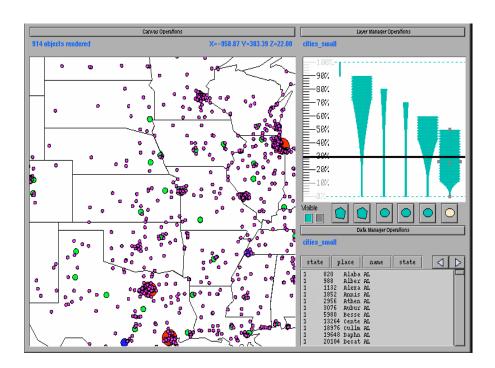


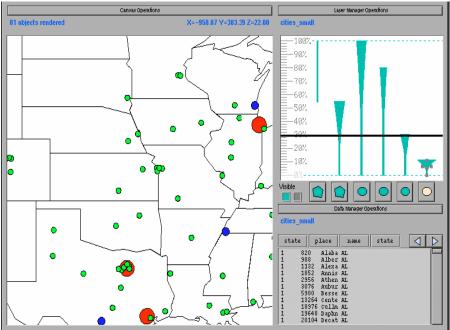

Modification Functions

- Applied to a layer, to modify its intensity
 - □ Operate on data (aggregating rows)
 - Operate on the visual representation


Examples:

- □ Selecting (cities with population > n)
- □ Aggregating (cities by state)
- Changing shape of glyph (triangle = less ink)
- Changing size of glyph
- Changing colour





- Hiding information, may be misleading
- Applies global density calculation, even to sparse areas, hiding information when unnecessary
- Abrupt shifts between layers, may cause popping effects

Paper critique

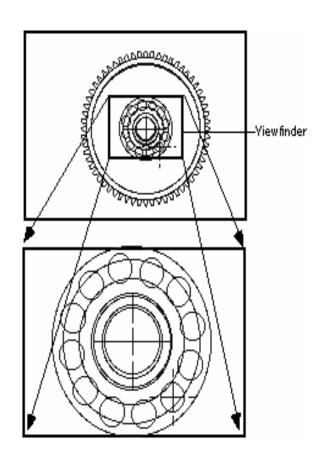
- Well written and detailed, providing justifications for implementation decisions
- Informal user study
 - Web based java applet
 - Evaluate user response to density variance
 - Uncontrolled study, some users said task was confusing
 - □ Results influenced by speed of different machines (avoiding dense layers due to responsiveness)

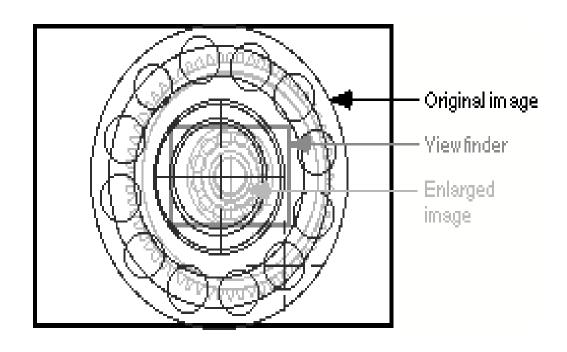
Questions?

M

A Multi-Scale, Multi-Layer, Translucent Virtual Space

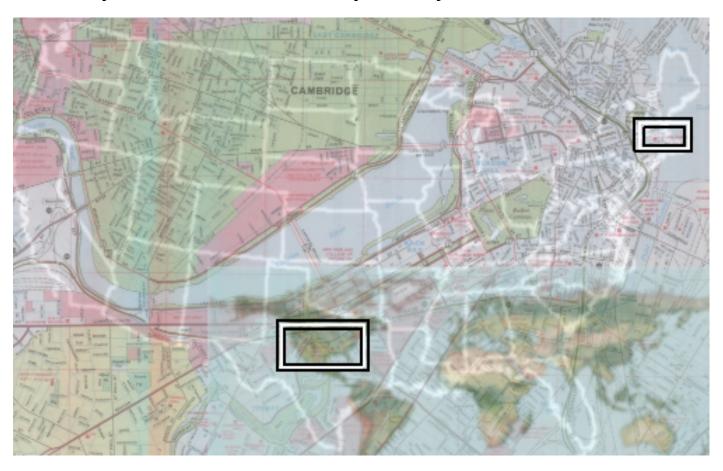
Henry Lieberman
Media Laboratory
Massachusetts Institute of Technology
Cambridge, Mass. USA
lieber@media.mit.edu
http://www.media.mit.edu/~lieber/




Problem Domain

- Attemps to solve the problem of context loss when zooming in for more details
- Introduces the macroscope: overlapping, translucent zoomed-in and zoomed-out layers!
- Allegedly applicable to:
 - □ Charts
 - □ Maps
 - □ File browsers
 - □ Etc

The Macroscope

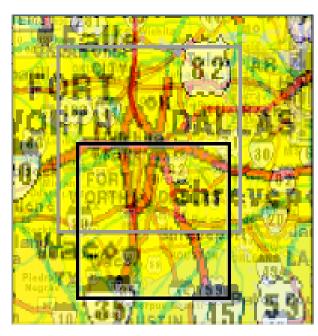


Would it work?

- Claims that multiple layers can still retain clarity when overlapped by using:
 - Translucency
 - □ Focus, blurring
 - Dynamic interaction, movement of layers
- Especially suited for multiple-resolution data, that has different representations at different zoom scales
 - Difference in features helps enhance the visual distinction between layers
- Claims that the human visual system is adept at discerning features at different scales, and separating the layers, even when superimposed

The Macroscope in practice

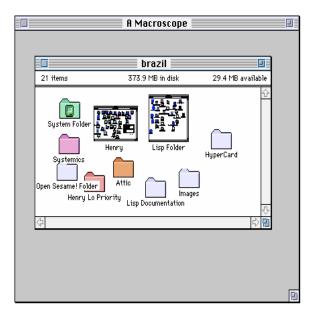
Three layers, World to Country to City

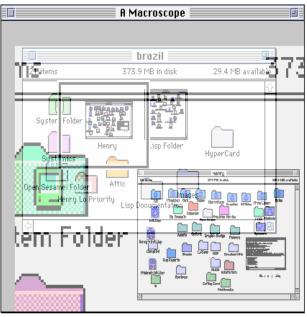

Details

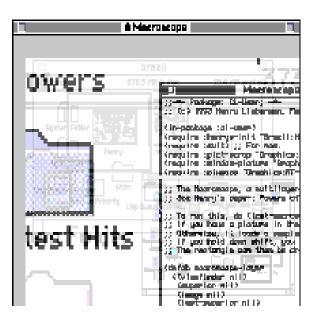
- The user can create viewports at any layer and can:
 - □ Resize the viewport (zooming the corresponding layer)
 - Move the viewport (panning the layer)
 - Change translucency of layers, highlighting the zoomed-out context, or the zoomed-in focus of interest
- The viewer is always oriented in space, since all zoom layers are visible
- Layers are highlighted when corresponding viewport is selected.

Some more map examples

- Viewport rectangle fades with the corresponding layer, to reduce clutter
- Maps are particularly suited for the macroscope, due to their sparse, high-contrast features (road lines, city dots, text labels). Really?







File browser example

No opening/closing folders, just zooming

Method critique

- Cluttered mess
- Ambiguous what information comes from what layer
- By combining layers at different scales, false features can be introduced
- Anything past two layers is practically unuseable
 - □ To reduce visual density, zoomed out layers would have to be very translucent
 - ☐ Thus not very good file-browser replacement
 - □ Even worse for maps, introduces fake features
 - □ Does not adequately achieve its goal of maintaining context

Paper critique

- No analysis of information density, and perceptual effects of the overlapped clutter.
- Picture descriptions did not attempt in any way to address the most obvious drawback, instead: "see, you can still sort of tell the different layers apart" (paraphrased)
- No user study because the system was too slow (running on an old Macintosh 9500/200, realtime SGI system was apparently in the works).
- Future work: true 3D stereo viewing and 3D input device will fix it!

Redeemer: Diablo II

Questions?