
Two Papers on 
Network Visualization

CPSC 533c
Presented by: Jeremy Hilliker

2005-11-07



3D Geographic 
Network Displays

Cox, Eick, He
Bell Laboratories
1996



Motivation

� Computer networks can be represented as 
graphs

� Often, there is geographic data associated 
with the network (physical locations)

� We can put these graphs on a map!
� But, our ability to extract data from large 

datasets has not kept pace with our ability to 
create and gather the data



Motivation

� The telecom dataset is huge!
� Node-link diagrams do not scale
� They become overwhelmed, cluttered, and 

confused
�Too many nodes
�Too many edges
�Edge crossings
�Bleh!



Motivation

� We could use graph layout algorithms
� But then we loose all of the geographic 

encoding
� … that stuff was important for easy 

understanding
� The paper proposes five solutions which 

preserve geographic layout by using 3D



Why 3D?

� If we draw arcs instead of lines for edges, 
we can use pre-attentive depth perception 
and continuity detection to eliminate the 
perception of line crossings in the graph



Global Networks
� Position nodes geographically on a globe
� Draw edges as arcs between them



Global Networks
� Retains spatial information
� “Eliminates crossings” … doubtful
� Nodes represented by glyph which can use 

all of that glyph encoding stuff
� Arcs encoded by colour for extra info
� Illuminated by a fixed light which can indicate 

passage of time… not convinced
�What happens at “night”?

� User restricted to rotations, so can’t get lost



Global Networks
� We can’t see around the globe, so we need a 

translucency control to see through it
�But it’s still confusing if there is edge occlusion

� That edge clutter is still there
�We can filter, losing context
�Or we can select how to re-rout an edge

� Perhaps underground?

� … it gave great geographic context, but still 
had all of the 2D layout problems… but 
worse… I don’t think it helped much



Arc Maps
� Idea: embed a 2D map in 3D space, run edges as 

arcs in 3D



Arc Map

� Not restricted to a global view, can be of a 
small region
�Leads to “drill-down” = details on demand

� Arcs in 3D reduce edge clutter
�Really get continuation
�Can rotate and zoom to get depth perception

� Arc height can give another encoding of info
� Can make arcs translucent to reduce 

occlusion



Spoke View

� Colour code spokes for edge data
� Colour and size code nodes
� Nodes can be placed in geographic position if we 

put the root at the centre of a polar projection
� This would make it a filtered 2D global view…

� But this won’t scale
� All lines become same length wasting screen space
� Statement: we can rebuild it using 3D!



Helix View
� What if the spoke view was a top down view of a helix 

structure?
� We could rotate it to see everything



Pincushion View

� Arrange nodes on surface of a sphere
� Lines maintain the same spatial length (radius), but 

different screen length
� But nodes are evenly spread out
� Still need to rotate it to see everything



Discussion



Visualizing Large-
Scale Telecom Nets 
and Services
Koutsofios et al.
AT&T Labs
1999



Motivation

� Still have lots of data … lots of small data
� Old databases don’t handle lots of real-time, small, 

inter-related data well
� Understanding full scale of data is needed to manage 

effectively
� Goals:

� Go from data to business decisions quickly
� Raise level of abstraction… lines, not devices
� Real-time responsiveness

� Main contribution: stream based, not query/response



Visualization stuff

� Linked 2D and 3D views (detail + overview)
� Automated context-preserving pan + zoom
� Different overlays for different data
� Semantic zoom (value per state vs. county)
� Animation over time
� Can browse and drill-down
� … seems pretty okay



Visualization Stuff



Architecture
� 3 modules

�Data collector (and storage)
�Aggregator (data processing and pre-proc.)
�Visualization (not the important part here)

� Communication over self-describing data-
independent formats
�Sounds like a bad idea… (was 1 year after XML)
�North-American telecom is a dinosaur

� Uses advanced systems stuff for fast 
communication



Data Collector

� Data is converted to the native format 
� Some data has to be aggregated and joined 

over diverse and content-dependent sources
�Mostly because telecom data is a mess

� Data that is in the right format just needs a 
schema attached
�Doesn’t sound convincing



Data Processing

� Based on pipeline model
� Concurrent processes are piped together
� Pipes can:

� “Tee”
� Filter
� Count
� Split

� Pipelines are parallelizable, modular, and simple… 
fast efficient, and maintainable

� Pipeline modules are compiled and dynamically 
linked



Data Visualization

� Interaction pattern:
�View data
�Focus on something interesting
�Query for more details
�Re-aggregate and view results

� Does this by maintaining a link between raw 
data, aggregate data, and visualized 
representation



Architecture for Performance

� Does systems stuff to make things fast
�Pipelines
�Random access files with version stamps
�Direct I/O
�Memory mapping
�Dynamic linking of runtime generated code



Discussion



Sources

� Images taken from original papers or found through 
goolge image search

� 3D Geographic Network Displays Kenneth C. Cox, 
Stephen G. Eick, Taosong He. ACM SIGMOD 
Record Volume 25, Number 4, pp 50-54, 1996 

� Visualizing Large-Scale Telecommunication 
Networks and Services Eleftherios Koutsofios, 
Stephen C. North, Russell Truscott, Daniel A. Keim. 
Proc IEEE Visualization 1999, pp 457-461. 


