Frameworks/Models

Lecture 4 CPSC 533C, Spring 2004

21 Jan 2003

Tamara Munzner

Frameworks

Shneiderman

· Data, Tasks

Mackinlay/Card/Bertin/Stolte/Wilkinson

· Data Types, Marks, Retinal Attributes (incl Position) reinish

· Data, User, Computation, Interaction, Communication, Display

Bertin

Wilkinson

Hanrahan

· Data/Conceptual Models

2

Mapping

input

- · data semantics
- · use domain knowledge

output

- · visual encoding
 - visual/graphical/perceptual/retinal
 - channels/attributes/dimensions/variables
- · use human perception

processing

- · algorithms
- · handle computational constraints

4

Visual Language is a Sign System

Image perceived as set of signs

Sender encodes information in these signs

Receiver decodes informatio from these signs

6

Shneiderman's Taxonomy Data 10, 2D, 3D, Temporal, nD, trees, networks More Data Types (Hanrahan): Text and Documents Tasks Overview, Zoom, Filter, Details-on-demand, Relate, History, Extract [Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations]

Data Models vs. Conceptual Models data model: mathematical abstraction • set with operations • e.g. integers or floats with *,+ conceptual model: mental construction • includes semantics, support data • e.g. navigating through city using landmarks [Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding/walk005.html]

From data model 17, 25, -4, 28.6 (floats) using conceptual model (temperature) to data type burned vs. not burned (N) hot, warm, cold (O) continuous to 4 sig figures (Q) using task making toast classifying showers finding anamolies in local weather patterns

Automatically pick correct visualization

Mackinlay, APT Roth et al, Sage

limited set of data, encodings

Credits, More

Pat Hanrahan

[graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
Torsten Moeller, Melanie Tory

· discussions

- Vis03 Panel, Theresa-Marie Rhyne
 "Information and Scientific Visualization: Separate but Equal or Happy Together at Last",

 - · Matt Ward
 - · Chris Johnson · David Laidlaw

J. Bertin

· Semiology of Graphics Leland Wilkinson

· The Grammar of Graphics

Time

2D+T vs. 3D

· same or different? depends on POV time as input data? time as visual encoding?

· time just one kind of abstract input dimension

- · input semantics
- · visual encoding: spatial position vs. temporal change

processing might be different · e.g. interpolate differently across timesteps than across spatial position