
1

Software
Visualization

Wesley Coelho
CPSC 533C
March 29, 2004

Visualizations for Software
Engineering
� Visualizations for the following engineering tasks

are reviewed:
� Optimization
� Testing
� Monitoring deployed software

� Common themes
� Overview + detail views
� Source code is abstracted with SeeSoft views (Eick,

Steffen and Sumner, 1992)

Reviewed Papers

� Visualizing Application Behavior on Superscalar
Processors (Stolte, Bosch, Hanrahan and
Rosenblum, 1999)

� Technical Note: Visually Encoding Program Test
Information to Find Faults in Software (Eagan,
Harrold, Jones and Stasko, 2001)

� Visualization of Program-Execution Data for
Deployed Software (Orso, Jones and Harrold,
2003)

Introduction

� Goal: Visualize program instruction execution on
a superscalar processor

� Superscalar processors
� Can execute more than one instruction per cycle
� Instructions can be executed out-of-order
� Some instructions depend on the results of other

instructions
� Program source code structure can be modified

to increase instruction-level parallelism for better
performance

Why Visualize?

� Software developers rarely attempt such
optimizations
� Individual instructions need to be investigated
�Millions of instructions are executed per

second
�Programmers work with source code, not

instructions

Sample Dataset
PC:401eb8 IHI:4d ILO: 40418 ;sra r4,r4,24
PC:401ec0 IHI: 3 ILO: 1007f6 ;jal 0x401fd8
PC:401fd8 IHI:49 ILO: 40418 ;sll r4,r4,24
PC:401fe0 IHI:4d ILO: 4040e ;sra r4,r4,14
PC:401fe8 IHI:71 ILO: 110e5 ;lui r1,0x10e5
PC:401ff0 IHI:36 ILO: 4010100 ;addu r1,r4,r1
PC:401ff8 IHI:15 ILO: 100c1e8 ;l.d f0,-15896(r1)
PC:402000 IHI:76 ILO: 2060000 ;dmtc1 r6,f2
PC:402008 IHI:36 ILO: 600 ;addu r6,r0,r0
PC:402010 IHI:6a ILO: 20000 ;c.lt.d f0,f2
PC:402018 IHI:37 ILO: 7007f ;addiu r7,r0,127
PC:402020 IHI: c ILO: 8 ;bc1f 0x402048
PC:402048 IHI:36 ILO: 500 ;addu r5,r0,r0
PC:402050 IHI:71 ILO: 210e5 ;lui r2,0x10e5
PC:402058 IHI:37 ILO: 202bdf0 ;addiu r2,r2,-16912
PC:402060 IHI:36 ILO: 4020400 ;addu r4,r4,r2
PC:402068 IHI:36 ILO: 6070200 ;addu r2,r6,r7
PC:402070 IHI:4d ILO: 20301 ;sra r3,r2,1

2

Visualization Approach

� Overview + Detail display based on three views
� Timeline View

� Overview of application’s execution
� Used to find problems

� Pipeline View
� Detailed view of instructions in the pipeline at a particular cycle
� Used to identify a problem

� Source Code View
� Relates overview and detail views to lines of source code

Timeline View

Pipeline View Source Code View

Paper Critique

� Strengths
� These techniques are general enough for use in other applications:

Compiler and hardware design, assembly lines, graphics pipelines
� Animation could be very useful for understanding pipeline behaviour
� Intuitive use of visual cues in timeline view
� Self contained – accessible background information about superscalar

processors is included
� Weaknesses

� Scalability -- Only one second of instructions can be visualized
� Description of animation is deferred to another paper
� Somewhat complicated colouring scheme for instructions in pipeline

view, no legend for instruction border colours
� Fixed timeline intervals, no explanation for chosen values
� No explanation of how mapping from instructions to source lines is

performed, or what input data is required

3

Reviewed Papers

� Visualizing Application Behavior on Superscalar
Processors (Stolte, Bosch, Hanrahan and
Rosenblum, 1999)

� Technical Note: Visually Encoding Program Test
Information to Find Faults in Software (Eagan,
Harrold, Jones and Stasko, 2001)

� Visualization of Program-Execution Data for
Deployed Software (Orso, Jones and Harrold,
2003)

Tarantula

� A visualization for automated software test
suite results

� Large systems sometimes have thousands
of test cases

� Tarantula provides a high-level overview
of how the software functions under
testing

Input Dataset

� Test case results
�Test number
�Pass or Fail
�Lines of code covered during test execution

Visualization Approach
� Overview of test results is shown with an array

of rectangles representing test cases executed
� Green rectangles indicate passed tests
� Red rectangles indicate failed tests

� Lines representing source-code lines
are coloured to indicate the number of
passed or failed tests that executed
that line

Source-line colouring scheme

� Hue is displayed on a spectrum from red to
yellow to green
� More red indicates the statement was executed in a

higher proportion of failed tests

� Brightness indicates the number of tests that
executed the statement
� High brightness indicates a high number of tests that

executed the statement passed or failed

� Intuition: Lines that are most likely to be faulty
should be closer to bright red

4

Paper Critique

� Strengths
� This is a useful solution to a real problem
� Paper explains why several simpler colouring schemes were not used
� Flexible interface, i.e. “Discrete Mode” available for a simpler

perspective of the faults
� Weaknesses

� Source code window is too small. May be difficult to scroll if code
changes when you mouse over the main view to get to the scrollbar

� The name of a file containing a selected source code line is not shown
� Colour Legend could include axis labels indicating what bright red or

dark yellow means
� Confusing description of the actual meaning of the Hue and Brightness

colouring scheme
� Is there a system available for producing the input to this tool?
� Scalability – System can only show results for a few files at a time

Reviewed Papers

� Visualizing Application Behavior on Superscalar
Processors (Stolte, Bosch, Hanrahan and
Rosenblum, 1999)

� Technical Note: Visually Encoding Program Test
Information to Find Faults in Software (Eagan,
Harrold, Jones and Stasko, 2001)

� Visualization of Program-Execution Data for
Deployed Software (Orso, Jones and Harrold,
2003)

Motivation and Dataset

� Many software problems arise only when
deployed

� The Gamma tool is capable of collecting
program-execution data
� Coverage data
� Exception-related information
� Profiling information
� Memory and CPU usage

� This can produce a vast amount of data when
there are many deployed instances

Gammatella

� Implements a novel approach for visualizing
program-execution data

� Supports continuous monitoring and exploration
� Program-execution data is shown by applying

colour to different levels of program
representation
� Statement Level
� File Level
� System Level

Example Application: Profiling

� Profiling finds code that is executed often
� This is useful for

� Finding code to optimize
� Determining feature usage
� Reducing software bloat

� Colour assignment
� Red = statement executed very often
� Yellow = statement executed often
� Green = statement executed rarely

Statement Level

� Provides detail by showing actual source
code

� Higher levels of are abstraction required

5

File Level

� SeeSoft-style miniature view of source
code

� Relative colours of source code lines still
visible

� Still not suitable for viewing large programs

System Level Treemap

� The system is represented using a treemap of its
package and file structure

� The size of a leaf node is proportional to the
number of lines in the file it represents

� Example:

System Level Treemap

� Colour distribution of statements must be
represented in the corresponding treemap
node

� Nodes are coloured in proportion to the
colours of lines in the corresponding file

System Level Treemap

� File-node colouring algorithm

Miniature
source-
code view

Statement
colours
plotted on
the hue-
brightness
space

Space is
divided into
discrete
‘buckets’

Make the
width of each
‘bucket’
proportional
to the number
of statements
in the row

Make the
height of
each row
proportional
to the number
of statements
in the node

Execution Bar

� An “execution” represents a run of a program
and the corresponding data collected

� Executions are represented as vertical bands on
an execution bar

� Depending on the data being represented, hue
or hue and brightness are used to determine the
colour

� Scrollbars allow an unlimited number of
executions to be displayed

6

Filters and Summarizers

� Collected data is recorded as property-
value pairs e.g. java.version = 1.4.1_01

� The executions visualized can be filtered
using statements such as:
(java.version = ‘1.3.0’) and
(os.name = ‘Linux’)

� A ‘summarizer’ is a statement that
instructs the system to aggregate
executions with the specified properties

Feasibility Study

� Applied Gamma and Gammatella to JABA (Java
Architecture for Bytecode Analysis)

� 550 Classes, 60KLOC
� Instrumentation caused a 28% reduction in

performance
� Found many classes that were never used
� Found that JABA failed systematically when

using the Sun JVM v. 1.4.0 on Solaris 2.8

Paper Critique

� Strengths
� Scales to visualize larger systems than SeeSoft views alone
� Solution can be generalized to many forms of analysis
� Feasibility study suggests that valuable information can be gained from

the system
� Weaknesses

� Feasibility study suggests that instrumentation might be infeasible for
many applications due to performance reduction

� May be difficult to explore package structure – need to hover over
package to get tool-tip with package name

� Many file name labels are unreadable
� Suggested colouring schemes for the execution bar were not explained
� Colour mappings used in the feasibility study were not stated
� Paper organization: Potential colour mappings not stated until the end

Questions?

