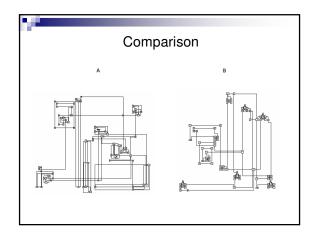

Effective Graph Visualization via Node Grouping

- visualizes large graphs
- 2D drawing
- assumes the existence of complete or almost complete subgraphs in the graph to be visualized
- use of two type of techniques:
 force directed
 - orthogonal drawing

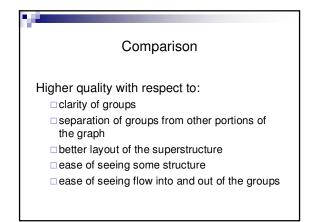
Levels of Abstraction total abstraction proximity abstraction explicit proximity abstraction

interactive abstraction

Comparison


 Technique uses the same amount of space as the original force directed algorithm

Improvements:


- □ 22% in edge crossings
- □ 17 % in in average edge length
- □ 12 % in maximum edge length
- 17 % in total edge length
- □ 35 % in average clique edge length
- □ 15 % in average neighbourhood edge length

Orthogonal Drawing with Node Grouping

- 1. find node grouping
- 2. use total abstraction to get the superstructure \mathbf{G}_{s}
- 3. create orthogonal layout of G_s
- 4. replace all supernodes in G_s with the group of nodes it represents and place these nodes at the position of the supernode
- 5. route the edges incident to group nodes

Comparison Slightly slower, on average, than the interactive graph drawing technique Improvements: 52% in area 60% in bends 45% in edge crossings 59% in average edge length 38% in maximum edge length 59% in total edge length 90% in average clique length 52% in average neighbourhood edge length

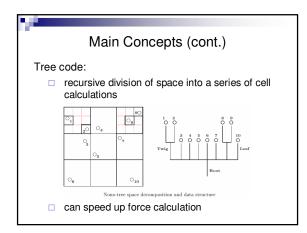
Critique

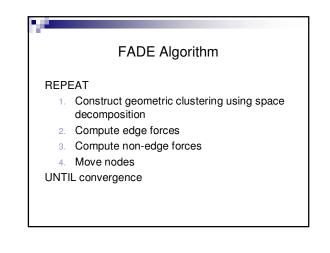
Pros:

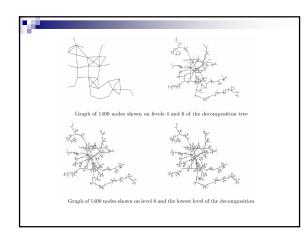
- easy to understand
- no occlusion
- □ ran experiments over a set of almost 600 graphs

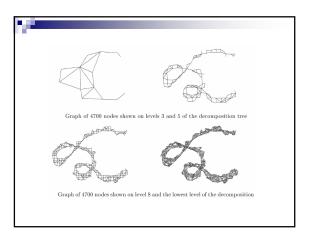
Cons:

- no user study
- $\hfill\square$ no explanation of basic techniques
- $\hfill\square$ no mention of what a large graph means
- comparison is not done with the most recent techniques
- □ no conclusion

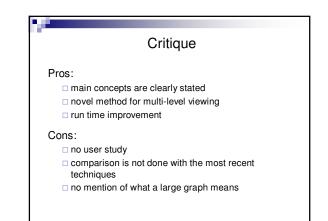

FADE: Graph Drawing, Clustering, and Visual Abstraction

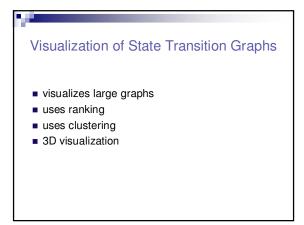

- fast algorithm for the drawing of large undirected graphs
- is based on
 the force directed approach
 clustering
 space decomposition
- 2D drawing

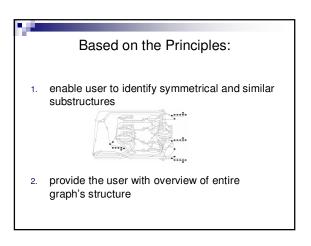

Main Concepts Clustering: performed based on the structure of graph allows performance improvement allows multi-level viewing


Geometric clustering:

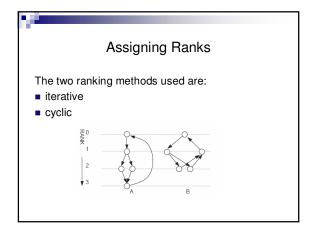
- points close to each other belong to the same cluster
- points far apart belong to different clusters

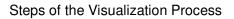


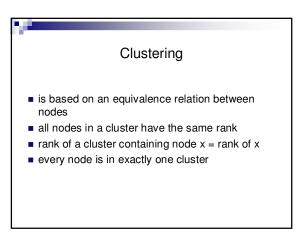




		Com	paris	on		
	NT - 1 T	Direct (sec)		07.12		
	512	0.455	0.04	0.513		
	1020	1.82	0.04	0.513		
	1442	3.61	0.168	0.675		
	2500	10.88	0.202	0.622		
	6000	62.66	0.676	0.673		
	10510	192	1.704	0.449		
	22800	920	3.36	0.561		
	30000	1593	3.546	0.517		
	40960	2979	5.592	0.567		
	49284	4316	6.730	0.628		
	105233	19604	13.371	0.481		
Experin	nental Co	omparison o	of tree-code	Vs direct fe	orce calcu	lation
error: vect	or measu	ure comput	ed from th	e direct no uted in FAD	n-edge to	prces and

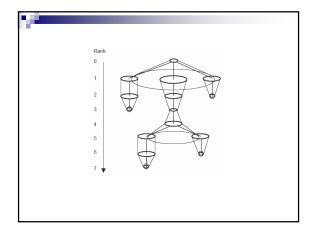





Steps of the Visualization Process

- 1. Assign a rank to all nodes
- 2. Cluster graph based on structural property
- 3. Visualize structure using cone trees
- 4. Place individual nodes and edges on graph

- 1. Assign a rank to all nodes
- 2. Cluster graph based on structural property
- 3. Visualize structure using cone trees
- 4. Place individual nodes and edges on graph



Steps of the Visualization Process

- 1. Assign a rank to all nodes
- 2. Cluster graph based on structural property
- 3. Visualize structure using cone trees
- 4. Place individual nodes and edges on graph

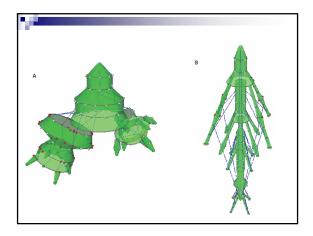
Visualizing the Structure

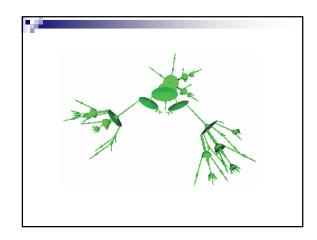
- symmetry (clusters are placed on the graph according to some structure based rules)
- clear visual relationship between backbone structure and actual graph
- clusters with many nodes are represented by bigger circles

Steps of the Visualization Process

- 1. Assign a rank to all nodes
- 2. Cluster graph based on structural property
- 3. Visualize structure using cone trees
- 4. Place individual nodes and edges on graph

Placing the Nodes


- emphasizes symmetry in the structure (nodes with the same properties are positioned the same way)
- short edges between nodes
- maximum possible distance between nodes within the same cluster (to reduce clutter and to avoid coinciding of nodes)


Placing the Nodes

To position the nodes:

- nodes are placed on graph based on the position of ancestor and descendent nodes
- adjust position of nodes to increase space between nodes in the same cluster

Critique

Pros:

- easy to read (provides good examples)
- occlusion is avoided (by rotating the non-centered clusters and by using transparency)
- authors state when is the cyclic and when is the iterative ranking more efficient
- real data is used at testing

Cons:

- no user study
- method not good when visualizing highly connected graphs