Time Series visualizations

Information Visualization - CPSC 533c

Lior Berry

March 10th 2004

Papers presented

- ThemeRiver: Visualizing Thematic Changes in Large Document Collections, Susan Havre, Elizabeth Hetzler, Paul Whitney, Lucy Nowell
- Interactive Visualization of Serial Periodic Data, John Carlis, Joseph Konstan
- Visual Queries for Finding Patterns in Time Series Data, Harry Hochheiser, Ben Shneiderman + Demo

Time series

- Data elements are a function of time
- D = { $(t_1,y_1),(t_2,y_2),...,(t_n,y_n)$ }, where $y_i=f(t_i)$
- Equal / non-equal time steps

Time series, Interesting?

- Fundamental data type
- Time dependent data
- Found in many domains such as finance, meteorology, physiology and genetics

The purpose of visualization

- Detect and validate properties of an unknown function f
- Temporal behavior of data elements
- When was something greatest/least?
- Is there a pattern?
- Are two series similar?
- Do any of the series match a pattern?
- Provide simpler, faster access to the series

Papers presented

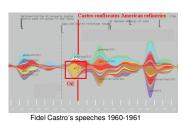
- ThemeRiver: Visualizing Thematic Changes in Large Document Collections, Susan Havre, Elizabeth Hetzler, Paul Whitney, Lucy Nowell
- Interactive Visualization of Serial Periodic Data, John Carlis, Joseph Konstan
- Visual Queries for Finding Patterns in Time Series Data, Harry Hochheiser, Ben Shneiderman + Demo


ThemeRiver

- Visualize themes over time in large document collection
- Suitable for presenting multiple attributes over time
- Relying on basic perception rules

River Metaphor

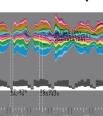
• River metaphor: Each attribute is mapped to a "current" in the "river", flowing along the timeline

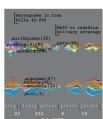


A company's patent activity

Visual cues

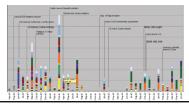
- Current width ~= strength of theme
- River width ~= global strength
- Color mapping (similar themes same color family)
- Time line
- External events

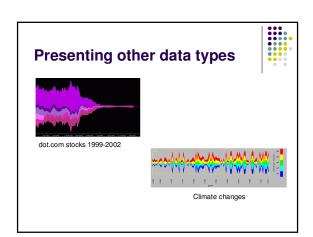



Cognitive rational

- Humans perceive complete "packages" and not individual element (Gestalt theory).
- Smooth continuous curves and colors
- Stacking the patterns facilitates comparisons
- Careful interpolation, refrain from "lying"

Extended expolration


Linking a river to a histogram


Comparing two rivers

Evaluation

- Comparison with a histogram view
- Users liked the connectedness of the river
- Missed the numerical values

Critique

Strong points:

- Intuitive exploration of temporal changes and relations
- Evalutation + improvements
- Applicable to general attributes

Weak points:

- Limited number of themes / attributes
- Interpolated values / outer attributes misleading
- · No ability to reorder currents
- Performance issues

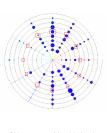
Papers presented

- ThemeRiver: Visualizing Thematic Changes in Large Document Collections, Susan Havre, Elizabeth Hetzler, Paul Whitney, Lucy Nowell
- Interactive Visualization of Serial Periodic Data, John Carlis, Joseph Konstan
- Visual Queries for Finding Patterns in Time Series Data, Harry Hochheiser, Ben Shneiderman + Demo

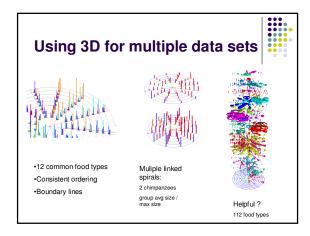
Interactive Visualization of Serial Periodic Data

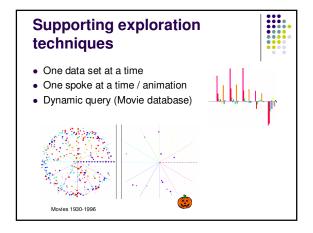
- Simultaneous display of serial and periodic attributes (e.g. seasonality)
- Traditional layouts exaggerate distance across period boundaries
- Focus+Context / Zoom unsuitable

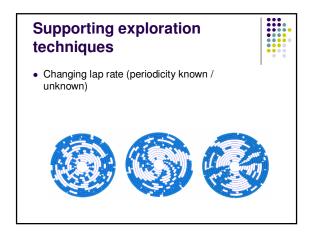
Spiral!

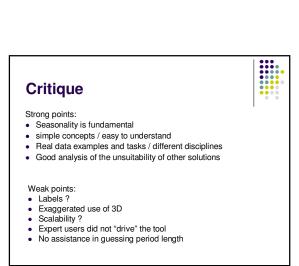

- Spiral axis = serial attributes
- Radii = periodic attributes
- Period = 360°
- Focus on pure serial periodic data (equal durations of cycles)

a (equal

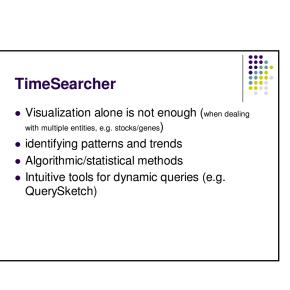

Spiral Example (for primatologists)




- Spokes (months) and spiral guide lines (years)
- Planar spiral
- Distinguishable patterns (rainy season / 1984)



Chimpanzees Monthly food consumption 1980-1988



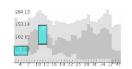
ThemeRiver: Visualizing Thematic Changes in Large Document Collections, Susan Havre, Elizabeth Hetzler, Paul Whitney, Lucy Nowell Interactive Visualization of Serial Periodic Data, John Carlis, Joseph Konstan Visual Queries for Finding Patterns in Time

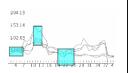
Series Data, Harry Hochheiser, Ben

Papers presented

Shneiderman

TimeSearcher - Timeboxes


- Visual query operator for time series (e.g. 1500 stocks)
- · Rectangular region drawn on the timeline display
- X-axis of the box = time period
- Y-axis of the box = constraint on the values
- Multiple timeboxes = conjunctive queries



TimeSearcher – Dynamic query

- Results on mouse up (O(w*log(MN)+k))
- A data envelope & a query envelope provide an overview for the query
- Linked views

Extended queries

- Relative changes
- Small interval patterns during a long time period
- · Querying for "leaders and laggards"
- Disjunctive queries

TimeSearcher - Demo time!

http://www.cs.umd.edu/hcil/timesearcher/

- Entity display window
- Query space
- Controlling multiple boxes together
- Query by example linked updates between views

Critique

Strong points:

- Simple and intuitive
- · Queries and results have immediate context
- Highly dynamic exploration

Weak points:

- Query power may be limited and simplistic
- Limited scalability for long time lines
- · Envelope may be misleading
- No Undo / Redo
- · Minimal report on evaluation

Summary

- There are not too many task specific visualization tools for time series
- Focus on multivariate data
- Support exploratory viewing
- Integrate with other tools / views