
University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Mathematical Operations, Static Methods

Lecture 9, Thu Feb 2 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

Reading

■ Re-read Chapter 4.3-4.5 (today)

■ Next week: Chapter 6 all (6.1-6.4)

News

■ Weekly Questions due today

■ Midterm reminder: Tue Feb 7, 18:30 - 20:00
■ Geography 100 & 200

■ Discovery Forum – here, right after class
■ Computer Science And Medicine: Where

Technology Meets Biology
■ you can see demos of what I do when I’m not

teaching!

Recap: Commenting Code
■ Conventions

■ explain what classes and methods do

■ plus anywhere that you've done something
nonobvious
■ often better to say why than what

■ not useful
int wishes = 3; // set wishes to 3

■ useful
int wishes = 3; // follow fairy tale convention

Recap: javadoc Comments
■ Specific format for method and class header

comments
■ running javadoc program will automatically generate

HTML documentation

■ Rules
■ /** to start, first sentence used for method summary

■ @param tag for parameter name and explanation

■ @return tag for return value explanation

■ other tags: @author, @version

■ */ to end

■ Running
 % javadoc Die.java
 % javadoc *.java

Recap: Cleanup Pass

■ Would we hand in our code as it stands?
■ good use of whitespace?
■ well commented?

■ every class, method, parameter, return value

■ clear, descriptive variable naming conventions?
■ constants vs. variables or magic numbers?
■ fields initialized?
■ good structure?

■ ideal: do as you go
■ commenting first is a great idea!

■ acceptable: clean up before declaring victory

Finishing Point and PointTest

Formal vs. Actual Parameters
■ formal parameter: in declaration of class

■ actual parameter: passed in when method is
called
■ variable names may or may not match

■ if parameter is primitive type
■ call by value: value of actual parameter copied

into formal parameter when method is called

■ changes made to formal parameter inside
method body will not be reflected in actual
parameter value outside of method

■ if parameter is object: covered later

Scope

■ Fields of class are have class scope:
accessible to any class member
■ in Die and Point class implementation, fields

accessed by all class methods
■ Parameters of method and any variables

declared within body of method have local
scope: accessible only to that method
■ not to any other part of your code

■ In general, scope of a variable is block of
code within which it is declared
■ block of code is defined by braces { }

Objectives

■ Understand how to use mathematical
shorthand operators

■ Understand when values will be implicitly
converted

■ Understand how to use static variables and
methods

Increment and Decrement

■ Often want to increment or decrement by 1
■ obvious way to increment

■ count = count + 1;

■ assignment statement breakdown
■ retrieve value stored with variable count

■ add 1 to that value

■ store new sum back into same variable count

■ obvious way to decrement
■ count = count - 1;

Shorthand Operators

■ Java shorthand
■ count++; // same as count = count + 1;
■ count--; // same as count = count - 1;

■ note no whitespace between variable name
and operator

■ Similar shorthand for assignment
■ tigers += 5; // like tigers=tigers+5;
■ lions -= 3; // like lions=lions-3;
■ bunnies *= 2; // like bunnies=bunnies*2;
■ dinos /= 100; // like dinos=dinos/100;

Shorthand Assignment Operators

■ what value ends up assigned to total?
int total = 5;
int current = 4;
total *= current + 3;

■ remember that Java evaluates right before left of =
■ first right side is evaluated: result is 7
■ total *= 7;
■ total = total * 7;
■ total = 5 * 7;
■ total = 35;

Data Conversion

■ Math in your head
■ 1/3 same as .33333333333333333….

■ Math in Java: it depends!

 int a = 1 / 3;

 double b = 1 / 3;

 int c = 1.0 / 3.0;

 double d = 1.0 / 3.0;

Data Conversion

■ Math in your head
■ 1/3 same as .33333333333333333….

■ Math in Java: it depends!

 int a = 1 / 3; // a is 0

 double b = 1 / 3; // b is 0.0

 int c = 1.0 / 3.0; // Java’s not happy

 double d = 1.0 / 3.0; // d is 0.333333333

Data Conversion

■ Consider each case

 int a = 1 / 3; // a is 0

■ Literals 1 and 3 are integers

■ Arithmetic with integers results in integer
■ fractional part truncated (discarded)

■ So 0 is value assigned to a

Data Conversion

■ Consider each case

 double b = 1 / 3; // b is 0.0

■ Literals 1 and 3 are integers
■ Arithmetic with integers results in integer

■ fractional part truncated (discarded)
■ So 0 is result on right side
■ Left side expects double

■ integer 0 is converted to floating point 0.0
■ So 0.0 is value assigned to b

Data Conversion
■ Consider each case

 int c = 1.0 / 3.0; // Java’s not happy

■ Literals 1.0 and 3.0 are doubles

■ Arithmetic with doubles results in double
■ results is 0.333333....

■ Left side expects int not double
■ fractional part would have to be truncated

■ Java wants to make sure you know you’d lose
fractional information

■ could be explicit with cast

int c = (int) (1.0 / 3.0); //cast placates Java

Data Conversion

■ Consider each case

 double d = 1.0 / 3.0; // d is 0.33333333

■ Literals 1.0 and 3.0 are doubles
■ Arithmetic with doubles results in double

■ results is 0.333333....
■ Right side double can hold value

■ well... just approximation of repeating value!
■ finite number of bits to hold infinite sequence

■ roundoff errors can be major problem
■ CPSC 302, 303 cover in more detail

Data Conversion

■ Casting: explicit data conversion

■ Widening: conversion from one data type to another
type with equal or greater amount of space to store
value
■ widening conversions safer because don’t lose

information (except for roundoff)

■ Narrowing: conversion from one type to another
type with less space to store value
■ important information may be lost
■ avoid narrowing conversions!

Data Conversion

■ Which of these is
■ not a conversion?

■ widening conversion?

■ narrowing conversion?

 int a = 1 / 3; // a is 0

 double b = 1 / 3; // b is 0.0

 int c = 1.0 / 3.0; // Java’s not happy

 double d = 1.0 / 3.0; // d is 0.3333333333333333

Assignment Conversion

■ Assignment conversion: value of one type
assigned to variable of other type, so must be
converted to new type

■ implicit, happens automatically

■ Java allows widening but not narrowing
through assignment

Promotion

■ Second kind of data conversion
■ happens when expression contains mixed data types

■ example:

 int hours_worked = 40;
 double pay_rate = 5.25;
 double total_pay = hours_worked * pay_rate;

■ To perform multiplication, Java promotes value
assigned to hours_worked to floating point value
■ produces floating point result

■ implicit, widening

Data Conversion

■ No such thing as automatic demoting
■ would be narrowing!

 int hours_worked = 40;
 double pay_rate = 5.25;
 int total_pay = hours_worked * pay_rate; // error

■ can use casting to explicitly narrow

int total_pay = hours_worked * (int) pay_rate;

Modulus Operator

■ computes remainder when second operand divided
into first
■ sign of result is sign of numerator
■ if both operands integer, returns integer
■ if both operands floating point, returns floating point

■ operator is %

int num1 = 8, num2 = 13;
double num3 = 3.7;
System.out.println(num1 % 3);
System.out.println(num2 % -13);
System.out.println(num3 % 3.2);
System.out.println(-num3 % 3);

Questions?

Static Variables

public class Giraffe {
private double neckLength;
public Giraffe(double neckLength) {
this.necklength = necklength;

 }
public void sayHowTall() {
 System.out.println(“Neck is “ + neckLength);

 }
}

Static Variables
public class Giraffe {
private double neckLength;
public Giraffe(double neckLength) {
this.necklength = necklength;

 }
public void sayHowTall() {
 System.out.println(“Neck is “ + neckLength);

 }
}

■ how would we keep track of how many giraffes
we’ve made?
■ need a way to declare variable that "belongs" to

class definition itself
■ as opposed to variable included with every instance

(object) of the class

Static Variables
public class Giraffe {
private static int numGiraffes;
private double neckLength;
public Giraffe(double neckLength) {
this.necklength = necklength;

 }
public void sayHowTall() {
 System.out.println(“Neck is “ + neckLength);

 }
}

■ static variable: variable shared among all instances
of class
■ aka class variable
■ use "static" as modifier in variable declaration

Static Variables
public class Giraffe {
private static int numGiraffes;
private double neckLength;
public Giraffe(double neckLength) {
this.necklength = necklength;

 numGiraffes++;

 }
public void sayHowTall() {
 System.out.println(“Neck is “ + neckLength);

 }
}

■ updating static variable is straightforward
■ increment in constructor

Static Variables

■ Static variable shared among all instances of
class
■ Only one copy of static variable for all objects

of class
■ Thus changing value of static variable in one

object changes it for all others objects too!

■ Memory space for a static variable
established first time containing class is
referenced in program

Static Methods

■ Static method "belongs" to the class itself
■ not to objects that are instances of class

■ aka class method

■ Do not have to instantiate object of class in
order to invoke static method of that class
■ Can use class name instead of object name

to invoke static method

Static Methods
public class Giraffe {
private static int numGiraffes;
private double neckLength;
public Giraffe(double neckLength) {
this.necklength = necklength;

 numGiraffes++;

 }
public void sayHowTall() {
 System.out.println("Neck is " + neckLength);

 }
public static int getGiraffeCount() {

 return numGiraffes;
 }
}

■ static method example

Calling Static Method Example
public class UseGiraffes
{
 public static void main (String[] args)
 {
 System.out.println("Total Giraffes: " +

Giraffe.getGiraffeCount());
 Giraffe fred = new Giraffe(200);
 Giraffe bobby = new Giraffe(220);
 Giraffe ethel = new Giraffe(190);
 Giraffe hortense = new Giraffe(250);
 System.out.println("Total Giraffes: " +

Giraffe.getGiraffeCount());
 }
}

■ Note that Giraffe is class name, not object name!
■ at first line haven’t created any Giraffe objects yet

Static Methods

■ Static methods do not operate in context of
particular object
■ cannot reference instance variables because they

exist only in an instance of a class
■ compiler will give error if static method attempts to

use nonstatic variable

■ Static method can reference static variables
■ because static variables exist independent of specific

objects

■ Therefore, the main method can access only static
or local variables.

Static Methods
public class UseGiraffes
{
 public static void main (String[] args)
 {
 System.out.println("Total Giraffes: " +

Giraffe.getGiraffeCount());
 Giraffe fred = new Giraffe(200);
 Giraffe bobby = new Giraffe(220);
 Giraffe ethel = new Giraffe(190);
 Giraffe hortense = new Giraffe(250);
 System.out.println("Total Giraffes: " +

Giraffe.getGiraffeCount());
 }
}

■ Now you know what all these words mean
■ main method can access only static or local variables

Static Methods in java.Math
■ Java provides you with many pre-existing static methods
■ Package java.lang.Math is part of basic Java environment

■ you can use static methods provided by Math class
■ examples:

> Math.sqrt(36)
6.0
> Math.sin(90)
0.8939966636005579
> Math.sin(Math.toRadians(90))
1.0
> Math.max(54,70)
70
> Math.round(3.14159)
3

> Math.random()
0.7843919693319797
> Math.random()
0.4253202368928023
> Math.pow(2,3)
8.0
> Math.pow(3,2)
9.0
> Math.log(1000)
6.907755278982137
> Math.log10(1000)
3.0

