
University of British Columbia

CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Class Design III

Lecture 8, Tue Jan 31 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Paul Carter

Reading This Week

! Chap 3 (today)

! Re-read Chapter 4.3-4.5 (Thursday)

! reminder - code examples created in class

posted by slides and assigned reading

News

! Assignment 1 due today 5pm

! Wed office hours 11:30-12:30 not 11-12

! reminder: in X661

! Windows home setup guide posted to

WebCT

! Reminders

! CSLC is available if you need help

! Check ugrad email account regularly (or

forward to active account)

! grade info sent there

Exam

! Midterm reminder: Tue Feb 7, 18:30 - 20:00

! Geography 100 & 200

! Exam conflict: email me today

! DRC: Disability Resource Center

! academic accomodation for disabilities

! forms due one week before exam (today!)

! http://students.ubc.ca/access/drc.cfm

Correction: UML

! UML diagram representing class design

Classname

fields

methods

+ field: type

- method(): return type

+ Classname()

+ method(): return type

+ method(param1 type,

param2 type): return

type

- field: type

Recap: UML

! UML diagram for Die class we designed

Die

fields

methods

- sides: int

+ Die()

+ setSides(numSides: int):

void

+ roll(): int

Objectives

! understand how to design new classes using
abstraction and encapsulation

! understand how to implement new classes in
Java

! understand how to comment classes using
javadoc conventions

! understand how to create documentation
using javadoc

! understand how to finish refining code

Recap: Separation and Modularity

! Design possibilities

! Die and RollDie as separate classes

! one single class that does it all

! Separation allows code re-use through modularity

! another software design principle

! One module for modeling a die: Die class

! Other modules can use die or dice

! we wrote one, the RollDice class

! Modularization also occurs at file level

! modules stored in different files

! also makes re-use easier

Recap: Control Flow Between Modules

! So far, easy to understand control flow: order

in which statements are executed

! march down line by line through file

! Now consider control flow between modules

int rollResult;

myDie.setSides();

rollResult = myDie.roll();

public int roll()

{

 …

}

public void setSides()

{

 …

}

Client code Die class methods

Key Topic Summary

Borrowed phrasing from Steve Wolfman

! Generalizing from something concrete

! fancy name: abstraction

! Hiding the guts from the outside

! fancy name: encapsulation

! Keeping one part from stomping on another

! fancy name: modularity

! Breaking down a problem

! fancy name: functional decomposition

Implementing Point and PointTest

public class Point {

}

Commenting Code

! Conventions

! explain what classes and methods do

! plus anywhere that you've done something

nonobvious

! often better to say why than what

! not useful
int wishes = 3; // set wishes to 3

! useful
int wishes = 3; // follow fairy tale convention

javadoc Comments

! Specific format for method and class header

comments

! running javadoc program will automatically generate

HTML documentation

! Rules

! /** to start, first sentence used for method summary

! @param tag for parameter name and explanation

! @return tag for return value explanation

! other tags: @author, @version

! */ to end

! Running
 % javadoc Die.java

 % javadoc *.java

javadoc Method Comment Example

/**

 Sets the die shape, thus the range of values it can roll.

 @param numSides the number of sides of the die

*/

public void setSides(int numSides) {

 sides = numSides;

}

/**

 Gets the number of sides of the die.

 @return the number of sides of the die

*/

public int getSides() {

 return sides;

}

javadoc Class Comment Example

/** Die: simulate rolling a die

 * @author: CPSC 111, Section 206, Spring 05-06

 * @version: Jan 31, 2006

 *

 * This is the final Die code. We started on Jan 24,

 * tested and improved in on Jan 26, and did a final

 * cleanup pass on Jan 31.

 */

Cleanup Pass

! Would we hand in our code as it stands?

! good use of whitespace?

! well commented?

! every class, method, parameter, return value

! clear, descriptive variable naming conventions?

! constants vs. variables or magic numbers?

! fields initialized?

! good structure?

! follows specification?

! ideal: do as you go

! commenting first is a great idea!

! acceptable: clean up before declaring victory

Formal vs. Actual Parameters

! formal parameter: in declaration of class

! actual parameter: passed in when method is

called

! variable names may or may not match

! if parameter is primitive type

! call by value: value of actual parameter copied

into formal parameter when method is called

! changes made to formal parameter inside

method body will not be reflected in actual

parameter value outside of method

! if parameter is object: covered later

Scope

! Fields of class are have class scope:
accessible to any class member

! in Die and Point class implementation, fields
accessed by all class methods

! Parameters of method and any variables
declared within body of method have local
scope: accessible only to that method

! not to any other part of your code

! In general, scope of a variable is block of
code within which it is declared

! block of code is defined by braces { }

