
University of British Columbia

CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Class Design II

Lecture 7, Thu Jan 26 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Paul Carter

Reading This Week

! Chap 3

! Reading for next week

! re-read Chapter 4.1-4.6

News

! Assignment 1 due Tue Jan 31 5pm

! Extra TA hours in ICICS 008 to answer questions

! Thu Jan 24 (today!) 4-6pm

! Olivia Siu

! Fri Jan 25 5-7pm

! Ciaran Llachlan Leavitt

! Sat Jan 26 12:30-2:30pm

! Simon Hastings

! Weekly questions due today

! Stay tuned for bboard postings with (some) answers

! Midterm reminder: Tue Feb 7, 18:30 - 20:00

! Geography 100 & 200

Recap: Escape Characters

! How can we make a String that has quotes?
! String foo = “oh so cool”;

! String bar = “oh so \”cool\”, more so”;

! Escape character: backslash

! general principle

Recap: Random Numbers

! Random class in java.util package

! public Random()

! Constructor

! public float nextFloat()

! Returns random number between 0.0 (inclusive) and

1.0 (exclusive)

! public int nextInt()

! Returns random integer ranging over all possible int

values

! public int nextInt(int num)

! Returns random integer in range 0 to (num-1)

Recap: Abstraction

! Abstraction: process whereby we

! hide non-essential details

! provide a view that is relevant

! Often want different layers of abstraction

depending on what is relevant

Recap: Encapsulation and Info Hiding

! Encapsulation: process whereby

! inner workings made inaccessible to protect them
and maintain their integrity

! operations can be performed by user only through
well-defined interface.

! aka information hiding

! Hide fields from client programmer

! maintain their integrity

! allow us flexibility to change them without affecting
code written by client programmer

! Parnas' Law:
! "Only what is hidden can by changed without risk."

Recap: Designing Classes

! Blueprint for constructing objects

! build one blueprint

! manufacture many instances from it

! Consider two viewpoints

! client programmer: want to use object in
program

! what public methods do you need

! designer: creator of class

! what private fields do you need to store data

! what other private methods do you need

Recap: UML

! UML diagram representing class design

Classname

private

public

- field: type

- method(): return type

+ Classname()

+ field: type

+ method(): return type

+ method(param1 type,

param2 type): return

type

Recap: UML

! UML diagram for Die class we designed

Die

private

public

- sides: int

+ Die()

+ setSides(numSides: int):

void

+ roll(): int

Objectives

! understand how to design new classes using

abstraction and encapsulation

! understand how to implement new classes in

Java

Implementing Die

! Last time

! designed UML diagram

! first draft of implementation

! it compiled, but untested!

! This time

! refine implementation

! test and debug implementation

Using Die

! Change hats from Die designer to Die user

! Roll two dice

! print each value, and sum

! Design and implement RollDice driver:

class with main method

Implementing RollDice

public class RollDice

{

 public static void main (String [] args)

 {

}

Separation and Modularity

! Design possibilities

! Die and RollDie as separate classes

! one single class that does it all

! Separation allows code re-use through modularity

! another software design principle

! One module for modeling a die: Die class

! Other modules can use die or dice

! we wrote one, the RollDice class

! Modularization also occurs at file level

! modules stored in different files

! also makes re-use easier

Control Flow Between Modules

! So far, easy to understand control flow: order

in which statements are executed

! march down line by line through file

! Now consider control flow between modules

int rollResult;

myDie.setSides();

rollResult = myDie.roll();

public int roll()

{

 …

}

public void setSides()

{

 …

}

Client code Die class methods

Designing Point: UML

! class to represent points in 2D space

Implementing Point

public class Point {

}

Formal vs. Actual Parameters

! formal parameter: in declaration of class

! actual parameter: passed in when method is

called

! variable names may or may not match

! if parameter is primitive type

! call by value: value of actual parameter copied

into formal parameter when method is called

! changes made to formal parameter inside

method body will not be reflected in actual

parameter value outside of method

! if parameter is object: covered later

Scope

! Fields of class are have class scope:
accessible to any class member

! in Die and Point class implementation, fields
accessed by all class methods

! Parameters of method and any variables
declared within body of method have local
scope: accessible only to that method

! not to any other part of your code

! In general, scope of a variable is block of
code within which it is declared

! block of code is defined by braces { }

Key Topic Summary

Borrowed phrasing from Steve Wolfman

! Generalizing from something concrete

! fancy name: abstraction

! Hiding the ugly guts from the outside

! fancy name: encapsulation

! Not letting one part ruin the other part

! fancy name: modularity

! Breaking down a problem

! fancy name: functional decomposition

