University of British Columbia
CPSC 111, Intro to Computation
Jan-Apr 2006

Tamara Munzner

Data Types, Assignment, Expressions,
Constants

Lecture 3, Thu Jan 12 2006
based on slides by Kurt Eiselt

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

News

= Weekly Question 1 due today

= Labs and tutorials started this week
= Labs on Friday cancelled
= you've been reassigned elsewhere

= if you missed assigned lab this week, attend
another session if possible

Reminder: Reading This Week

= Ch 1.1 -1.2: Computer Anatomy
= from last time

= Ch 1.3 — 1.8: Programming Languages

= Ch 2.1-2.2, 2.5: Types/Variables, Assignment,
Numbers

= Ch 4.1-4.2: Numbers, Constants

Reading for Next Week

= Rest of Chap 2
= 2.3-4,2.6-2.10

= Rest of Chap 4
= 4.3-47

Objectives

= Understand how to declare and assign variables
= Understand when and how to use which data type
= Understand how to convert between data types

= Understand how to interpret expressions

= Understand when to use constants

Recap: Assembly and Machine
Languages

assembly language machine language
—_—— —

assembler

add rl,r2,r6
00000100000

unimportant details for us

000000

add

00001
what's
in this
register

00010

to what's
in this
register

00110

and put it
in this
register

= Hard to read, write, remember
= Many instructions required to do things
= Different languages for each computer type

Recap: High-Level Languages

= Program written in high-level language converted to
machine language instructions by another program
called a compiler (well, not always)

high-level language machine language

compiler

= High-level instruction: A=B+C
becomes at least four machine language
instructions!
00010000001000000000000000000010 load B
00010000010000000000000000000011 load C
00000000001000100011000000100000 add them
00010100110000000000000000000001 store in A

Recap: Sample Java Program

= Comments, whitespace ignored by compiler

//***
// Oreo.java Author: Kurt Eiselt
// Demonstrating simple Java programming concepts while

// revealing one of Kurt's many weaknesses
//***

public class Oreo

{

//***
// demand Oreos
//***
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}

}

Recap: Identifiers

= Identifiers: start with letter [a-Z,$,], then
letters of digits [0-9]
= and not be reserved words
= case matters
= meaningful and descriptive, yet concise

Recap: Errors

logical error

run-time error

insight source object results

— editing code translating code executing —

compile-time error

= Compile-time errors
= syntax/structure

= Run-time errors

= Logical errors
= semantics/meaning

Recap: Variables

= Variable: name for location in memory where
data is stored

= avoid having to remember numeric addresses
= like variables in algebra class

= Variable names begin with lower case letters

= Java convention, not compiler/syntax
requirement

Recap: Data Types

Java requires that we tell it what kind of data it is

working with

= For every variable, we have to declare a data type

= Java language provides eight primitive data types
= i.e. simple, fundamental

= For more complicated things, can use data types

= created by others provided to us through the Java
libraries

= that we invent
= More soon - for now, let’s stay with the primitives
= We want a, b, and ¢ to be integers
= Here’s how we do it...

Recap: Variables and Data Types

//***
// Test3.java Author: Kurt

// Our third use of variables!
//***

public class Test3
{
public static void main (String[] args)
{
int a; //these
int b; //are
int ¢; //variable declarations
b = 3;
c=25;
a=b +c;
System.out.println ("The answer is " + a);

Variable Declaration and Assignment

= variable declaration is instruction to compiler

= reserve block of main memory large enough
to store data type specified in declaration

= variable name is specified by identifier
= syntax:
= typeName variableName;

Data Types: Int and Double

= int
= integer
= double
= real number
= (double-precision floating point)

Floating Point Numbers

= significant digits
" 42
=42
= 42000000
= .000042

Floating Point Numbers

= significant digits

. 42 =42*10 =4.2*10]

.42 =42%1 =42+109

« 42000000 = 4.2 * 10000000 =4.2*10’
= .000042 =4.2*.00001 =42*107

Floating Point Numbers

= significant digits

. 42 =42*10 =4.2*10]

.42 =42%1 =42+109

« 42000000 = 4.2 * 10000000 =4.2*10’
= .000042 =4.2*.00001 =42*107

= only need to remember
= nonzero digits
= where to put the decimal point
= floats around when multiply/divide by 10

Data Type Sizes

Type |Size Min Max

int 4 bytes |-2,147,483,648 2,147,483,647

double |8 bytes approx -1.7E308 approx 1.7E308
(15 sig. digits) (15 sig. digits)

= fixed size, so finite capacity

Address 4 Data
5802 (10000101
5803 [10110101 .
5804 [11110001 one integer

5805 /00010100
5806

5807

Variable Declaration Examples

person’s age in years

height of mountain to nearest meter

length of bacterium in centimeters

number of pets at home

Assignment
//***
// Test3.java Author: Kurt
//

// Our third use of variables!
//***

public class Test3
{
public static void main (String[] args)

{

int a;

int b;

int c;

b = 3; // these
c=5; // are

a b + ¢; // assignment statements

System.out.println ("The answer is " + a);

Assignment Statements

= Assignment statement assigns value to variable
= sometimes say binds value to variable
= Assignment statement is
= identifier
= followed by assignment operator (=)
= followed by expression
= followed by semicolon (;)

b = 3;
c = 8;
a=>b+ c;

weekly pay = pay rate * hours_worked;

= Note that = is no longer a test for equality!

Assignment Statements

= Java first computes value on right side
= Then assigns value to variable given on left side

x =4+ 7; // what’s in x?

= Old value will be overwritten if variable was
assigned before

x =2+ 1; // what’s in x now?

Assignment Statements

= Here’s an occasional point of confusion:

7; // what’s in a?
a; // what’s in b?
// what’s in a now???

V]
nn

Assignment Statements

= Here’s an occasional point of confusion:

7; // what’s in a?
a; // what’s in b?

// what’s in a now???
System.out.println(™®a is “ + a + “b is “ +b);

a
b

= Find out! Experiments are easy to do in CS

Assignment Statements
= Here’s an occasional point of confusion:

7; // what’s in a?
a; // what’s in b?

// what’s in a now???
System.out.println(“a is “ + a + “b is “ +b);

a
b

= Variable values on left of = are clobbered

= Variable values on right of = are unchanged
= copy of value assigned to a also assigned to b
= but that doesn’t change value assigned to a

Assignment Statements

= Here’s an occasional point of confusion:

7; // what’s in a?
a; // what’s in b?

// what’s in a now???
System.out.println(“a is “ + a + “b is “ +b);
a = 8;

System.out.println(“a is “ + a + “b is “ +b);

a
b

= Memory locations a and b are distinct
= copy of value assigned to a also assigned to b
= changing a later does not affect previous copy
= more later

Variable Declaration and Assignment

= variable declaration is instruction to compiler

= reserve block of main memory large enough
to store data type specified in declaration

= variable name is specified by identifier
= syntax:
= typeName variableName;
» typeName variableName = value;
= can declare and assign in one step

Expressions

= expression is combination of
= one or more operators and operands
= operator examples: +, *, /, ...
= operand examples: numbers, variables, ...
= usually performs a calculation
= don’t have to be arithmetic but often are

= examples
3
7+2
7+2*5
(7+2)*5

Operator Precedence

= What does this expression evaluate to?
7+2*5

Operator Precedence

= What does this expression evaluate to?
7+2*5
= Multiplication has higher operator precedence than
addition (just like in algebra)

precedence operator operation

1 higher + - unary plus and minus

2 *1 % multiply, divide, remainder
3 lower + - add, subtract

Operator Precedence

= What does this expression evaluate to?
7+2*5
= Multiplication has higher operator precedence than
addition (just like in algebra)
precedence operator operation
unary plus and minus

multiply, divide, remainder
add, subtract

1 higher +-

2 *1%

3 lower +-

= Use parentheses to change precedence order or just
clarify intent

(7+2)*5 7+(2*5)

Converting Between Types

= Which of these are legal?
= int shoes = 2;
1.75;
1;
= int shoes = 1.5;

= double socks

= double socks

Converting Between Types

= Which of these are legal?
= int shoes = 2;

1.75;
1;
= int shoes = 1.5;

= double socks

= double socks

= Integers are subset of reals
= but reals are not subset of integers

Casting

= Casting: convert from one type to another
with information loss
= Converting from real to integer
= int shoes = (int) 1.5;
= Truncation: fractional part thrown away
= int shoes = (int) 1.75;
= int shoes = (int) 1.25;
= Rounding: must be done explicitly
= shoes = Math.round(1.99);

Converting Between Types

//**i'******i'******i'************************

// Feet.java Author: Tamara
// What type of things can be put on feet?
//***
public class Feet

{

public static void main (String[] args)

{

int shoes 2;

int socks (int) 1.75;

System.out.println("shoes = " + shoes + " socks = " +
socks) ;

int toes = Math.round(1.99);

System.out.println("toes = " + toes);

}
}

= What’s wrong?

Data Type Sizes

Primitive Data Types: Numbers

Type |Size Min Max

int 4 bytes |-2,147,483,648 2,147,483,647

double |8 bytes approx -1.7E308 approx 1.7E308
(15 sig. digits) (15 sig. digits)

Type |Size Min Max
byte |1 byte |-128 127
short |2 pytes [-32,768 32,767

= doubles can store twice as much as ints

int 4 bytes |-2,147,483,648 2,147,483,647

long |8 bytes |-9.223,372,036,854,775808 |9,223,372,036,854,775,807

float approx 3.4E38 (7 sig.digits)

4 bytes approx -3.4E38 (7 sig.digits)

double |8 bytes |approx -1.7E308
(15 sig. digits)

approx 1.7E308
(15 sig. digits)

= Primary primitives are int and double

= three other integer types
= one other real type

Converting Between Types

//***

// Feet2.java Author: Tamara

J
// What type of things can be put on feet?
//***
public class Feet2
{
public static void main (String[] args)

{

int shoes = 2;

int socks = (int) 1.75;

System.out.println("shoes = " + shoes + " socks =
socks) ;

long toes = Math.round(1.99);

System.out.println("toes = " + toes);

}
}

n

+

Primitive Data Types: Non-numeric

= Character type
= named char
= Java uses the Unicode character set so each char
occupies 2 bytes of memory.
= Boolean type
= named boolean
= variables of type boolean have only two valid values
= true and false
= often represents whether particular condition is true

= more generally represents any data that has two
states

= yes/no, on/off

What Changes, What Doesn’t?

//***
// Vroom.java Author: Tamara
// Playing with constants
P T L T
public class Vroom
{
public static void main (String[] args)
{
double lightYears, milesAway;
lightYears = 4.35; // to Alpha Centauri
milesAway = lightYears * 186000 *60*60*24*365;
System.out.println("lightYears: " + lightYears + "
milesAway " + milesAway) ;
lightYears = 68; // to Aldebaran
milesAway = lightYears * 186000 *60*60*24*365;
System.out.println("lightYears: " + lightYears + "
milesAway " + milesAway) ;
}
}

Constants

= Things that do not vary

= unlike variables

= will never change
= Syntax:

= final typeName variableName;

= final typeName variableName = value;
= Constant names in all upper case

= Java convention, not compiler/syntax
requirement

Programming With Constants

public static void main (String[] args)
{
double lightYears, milesAway;

final int LIGHTSPEED = 186000;
final int SECONDS_PER YEAR = 60%*60%24*365;

lightYears = 4.35; // to Alpha Centauri

milesAway = lightYears * LIGHTSPEED * SECONDS_PER YEAR;

System.out.println("lightYears: " + lightYears + "
miles " + milesAway) ;

lightYears = 68; // to Aldebaran

milesAway = lightYears * LIGHTSPEED * SECONDS_ PER_YEAR;

System.out.println("lightYears: " + lightYears + "
miles " + milesAway) ;

}

Programming With Constants

public static void main (String[] args)
{
double lightYears, milesAway;
final int LIGHTSPEED = 186000;
final int SECONDS_PER_YEAR = 60%60*24*365;

final double ALPHACENT DIST = 4.35; // to AlphaCentauri
final double ALDEBARAN DIST = 68; // to Aldebaran

lightYears = ALPHACENT DIST;

milesAway = lightYears * LIGHTSPEED * SECONDS_PER YEAR;

System.out.println("lightYears: " + lightYears + "
miles " + milesAway) ;

lightYears = ALDEBARAN DIST;

milesAway = lightYears * LIGHTSPEED * SECONDS_PER YEAR;
System.out.println("lightYears: " + lightYears + "
miles " + milesAway) ;

}

Avoiding Magic Numbers

= magic numbers: numeric constants directly in
code
= almost always bad idea!
= hard to understand code
= hard to make changes
= typos possible
= Use constants instead

Questions?

