
1

University of British Columbia

CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Graphical User Interfaces

Lecture 24, Tue Apr 4 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

2

News

! Midterm solutions going out at end of week

! Final batch of Assignment 2s ready to hand

back after class

! Assignment 3 due Friday Apr 7, 5pm

! Remember Wed 11am office hours, CSLC

! Final exam: Mon Apr 24, 3:30pm, HEBB TH

3

Review Session

! Grad TA Karen Parker will run review session

before exam

! time not set yet, post your exam times on the

bboard thread and she'll minimize confliects

! check bboard later for announcement on

time/place

4

Recap: Inheritance Class Hierarchy

! Is base class something that you would

ever want to instantiate itself?

Generic

Vending

Machine

Coke

Machine

Coke

Machine2000

French Fry

Machine

is-a is-a

is-a

Coke

MachineUA

is-a

Pizza

Machine

Beer

Machine

is-a is-a

5

Recap: Abstract Classes

! Abstract class: not completely implemented

! serve as place holders in class hierarchy

! partial description inherited by all descendants

! Usually contains one or more abstract methods

! has no definition: specifies method that should be
implemented by subclasses

! just has header, does not provide actual implementation for
that method

! Abstract class uses abstract methods to specify what
interface to descendant classes must look like

! without providing implementation details for methods that
make up interface

! descendent classes supply additional information so that
instantiation is meaningful

6

Recap: Interfaces vs. Abstract Classes

! Use abstract class with inheritance to initiate a
hierarchy of more specialized classes

! Use interface to say, "I need to be able to call
methods with these signatures in your class."

! Use an interface for some semblance of multiple
inheritance

from Just Java 2 by Peter van der Linden

7

Objectives

! Taste of what's under the hood with graphical

programming

! note: taste, not mastery!

8

Reading

! This week:

! Chapter 5.1, 5.2, 11.5, 12.1, 12.2, 12.3

9

Simple Graphics

This week is all about very simple graphics in Java.

What we'll talk about aren't necessarily fundamental

computing concepts like loops, arrays, inheritance,

and polymorphism, which surface in all sorts of

different computing contexts.

This stuff will be Java-specific and may not translate

well to other programming languages.

10

Simple Graphics

The good news is that you might find graphics more

fascinating than Coke Machines.

The bad news is that Java graphics can become

tedious very quickly.

11

Simple Graphics

To begin with, we need a "canvas" or a "blank sheet

of paper" on which to draw. In Java, this is called a

frame window or just a frame. You don't put your

graphics just anywhere you want...you draw them

inside the frame.

It should come as no surprise that a specific frame

that we draw in will be an object of some class that

serves as a template for frames. Remember, nothing

much happens in Java until we create objects.

12

Making a frame window

Step 1: Construct an object of the JFrame class.

13

Making a frame window

import javax.swing.JFrame; //Swing is a user interface toolkit

public class FrameViewer

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame(); // make a new JFrame object

 }

}

14

Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

15

Making a frame window

import javax.swing.JFrame;

public class FrameViewer

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 }

}

16

Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

Step 3: Set the title of the frame to appear in the title

 bar (title bar will be blank if no title is set).

17

Making a frame window

import javax.swing.JFrame;

public class FrameViewer

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("My Frame"); // this is optional

 }

}

18

Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

Step 3: Set the title of the frame to appear in the title

 bar (title bar will be blank if no title is set).

Step 4: Set the default close operation. When the

 user clicks the close button, the program

 stops running.

19

Making a frame window

import javax.swing.JFrame;

public class FrameViewer

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("My Frame"); // this is optional

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

}

20

Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

Step 3: Set the title of the frame to appear in the title

 bar (title bar will be blank if no title is set).

Step 4: Set the default close operation. When the

 user clicks the close button, the program

 stops running.

Step 5: Make the frame visible.

21

Making a frame window

import javax.swing.JFrame;

public class FrameViewer

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("My Frame"); // this is optional

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 myframe.setVisible(true);

 }

}

22

Making a frame window

import javax.swing.JFrame;

public class FrameViewer

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("My Frame"); // this is optional

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // when it's time to draw something in the frame,

 // we'll do it here

 myframe.setVisible(true);

 }

}

23

Making a frame window

> java FrameViewer

24

Now let's draw something

Wait, hold on. We don't draw anything. We create

component objects (of course) and add them to the

frame we've created.

We make our own component in the Swing user

interface toolkit by extending the blank component

called JComponent to make a RectangleComponent.

The paintComponent() method is inherited from

JComponent, then we override the method with our

own definition that makes a couple of rectangles.

25

Now let's draw something

import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,

import java.awt.Graphics2D; // an older graphical user interface

import java.awt.Rectangle; // toolkit

import javax.swing.JPanel;

import javax.swing.JComponent;

public class RectangleComponent extends JComponent

{

 public void paintComponent(Graphics g)

 {

 }

}

26

Now let's draw something

The paintComponent() method of an object is called

automatically when the frame that contains it is

displayed for the first time, resized, or redisplayed

after being hidden.

27

Now let's draw something

import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,

import java.awt.Graphics2D; // an older graphical user interface

import java.awt.Rectangle; // toolkit

import javax.swing.JPanel;

import javax.swing.JComponent;

public class RectangleComponent extends JComponent

{

 public void paintComponent(Graphics g)

 {

 }

}

28

Now let's draw something

The paintComponent() method is passed an object of

type Graphics2D, which extends the Graphics type,

that contains useful information about colour and font

to be used, among other things. Graphics2D

provides more sophisticated methods for drawing

too.

But the paintComponent() method expects a

parameter of the older Graphics type, so we use a

cast to convert the object to Graphics2D type to

recover the methods that come with the Graphics2D

class.

29

Now let's draw something

import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,

import java.awt.Graphics2D; // an older graphical user interface

import java.awt.Rectangle; // toolkit

import javax.swing.JPanel;

import javax.swing.JComponent;

public class RectangleComponent extends JComponent

{

 public void paintComponent(Graphics g)

 {

 Graphics2D g2 = (Graphics2D) g;

 }

}

30

Now let's draw something

Now we draw a box. We give the X- and Y-

coordinates of the upper left hand corner of the box,

along with its width and height in pixels (i.e. picture

elements).

31

Now let's draw something

import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,

import java.awt.Graphics2D; // an older graphical user interface

import java.awt.Rectangle; // toolkit

import javax.swing.JPanel;

import javax.swing.JComponent;

public class RectangleComponent extends JComponent

{

 public void paintComponent(Graphics g)

 {

 Graphics2D g2 = (Graphics2D) g;

 Rectangle box = new Rectangle(5, 10, 50, 75);

 g2.draw(box);

 }

}

32

Now let's draw something

The translate() method allows the programmer to

start the drawing of the next box at different X- and

Y-coordinates.

33

Now let's draw something

import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,

import java.awt.Graphics2D; // an older graphical user interface

import java.awt.Rectangle; // toolkit

import javax.swing.JPanel;

import javax.swing.JComponent;

public class RectangleComponent extends JComponent

{

 public void paintComponent(Graphics g)

 {

 Graphics2D g2 = (Graphics2D) g;

 Rectangle box = new Rectangle(5, 10, 50, 75);

 g2.draw(box);

 box.translate(80,100);

 }

}

34

Now let's draw something

Now we can draw the second and final box.

35

Now let's draw something

import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,

import java.awt.Graphics2D; // an older graphical user interface

import java.awt.Rectangle; // toolkit

import javax.swing.JPanel;

import javax.swing.JComponent;

public class RectangleComponent extends JComponent

{

 public void paintComponent(Graphics g)

 {

 Graphics2D g2 = (Graphics2D) g;

 Rectangle box = new Rectangle(5, 10, 50, 75);

 g2.draw(box);

 box.translate(80,100);

 g2.draw(box);

 }

}

36

Now let's draw something

One more thing: we have to add the rectangle

component to our frame object.

37

Now let's draw something

import javax.swing.JFrame;

public class FrameViewer

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide

 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("My Frame"); // this is optional

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 RectangleComponent component = new RectangleComponent();

 myframe.add(component);

 myframe.setVisible(true);

 }

}

38

Here's what we drew

> java FrameViewer

39

Questions?

40

Graphical user interfaces (GUIs)

The graphical user interface allows us to interact with our

programs through mouse movements, button clicks, key

presses, and so on.

Your Windows or Macintosh operating system provides you

with a GUI so you don't have to remember all sorts of

instructions to type at the command line.

41

Graphical user interfaces (GUIs)

The graphical user interface allows us to interact with our

programs through mouse movements, button clicks, key

presses, and so on.

Your Windows or Macintosh operating system provides you

with a GUI so you don't have to remember all sorts of

instructions to type at the command line.

Here's a GUI you've seen me

use many times.

42

Event handling

How do we make a GUI in Java? We install event listeners.

An event listener is an object that belongs to a class which

you define. The methods in your event listener contain the

instructions to be executed when the events occur.

Any event listener is specific to an event source. For

example, you'd have one kind of event listener to respond to

the click of a button on your mouse, and another to respond

to the press of a key on your keyboard.

When an event occurs, the event source calls the

appropriate methods of all associated event listeners.

43

Event handling

Here comes an example, straight from your book. This

example is a simple program that prints a message when a

button is clicked.

An event listener that responds to button clicks must belong

to a class that implements the ActionListener interface. That

interface, supplied by the Abstract Windowing Toolkit (AWT),

looks like this:

public interface ActionListener

{

 void actionPerformed(ActionEvent event);

}

Java uses the event parameter to pass details about the

event. We don't need to worry about it.
44

Event handling

Here's what our example class that implements the

ActionListener interface looks like:

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ClickListener implements ActionListener

{

 public void actionPerformed(ActionEvent event)

 {

 System.out.println("I was clicked.");

 }

}

The actionPerformed() method contains the instructions we

want to be executed when our button is clicked.

45

Event handling

Next we'll see a program that tests our ClickListener class.

It looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to

put the button that we want to click.

46

Event handling

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;

public class ButtonTester

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame();

 final int F_WIDTH = 100;

 final int F_HEIGHT = 60;

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("Button Tester");

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 myframe.setVisible(true);

 }

}

47

Event handling

Next we'll see a program that tests our ClickListener class. It

looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to

put the button that we want to click.

Then we create a button object and add it to the frame, just

like the rectangles before.

48

Event handling

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;

public class ButtonTester

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame();

 final int F_WIDTH = 100;

 final int F_HEIGHT = 60;

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("Button Tester");

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");

 myframe.add(button);

 myframe.setVisible(true);

 }

}

49

Event handling

Next we'll see a program that tests our ClickListener class. It

looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to

put the button that we want to click.

Then we create a button object and add it to the frame, just like

the rectangles before.

Finally we create an event listener object called ClickListener

and attach it to the button we just made.

50

Event handling

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;

public class ButtonTester

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame();

 final int F_WIDTH = 100;

 final int F_HEIGHT = 60;

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("Button Tester");

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");

 myframe.add(button);

 ActionListener listener = new ClickListener();

 button.addActionListener(listener);

 myframe.setVisible(true);

 }

}

51

Event handling

> java ButtonTester

52

Event handling

A button listener class like ClickListener is likely to be

specific to a particular button, so we don't really need it to be

widely accessible. We can put the class definition inside the

method or class that needs it. So we can put this class:

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ClickListener implements ActionListener

{

 public void actionPerformed(ActionEvent event)

 {

 System.out.println("I was clicked.");

 }

}

inside the main method of the ButtonTester class as an inner

class.

53

Event handling

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent; // note this addition

public class ButtonTester2

{

 public static void main(String[] args)

 {

 JFrame myframe = new JFrame();

 final int F_WIDTH = 100;

 final int F_HEIGHT = 60;

 myframe.setSize(F_WIDTH, F_HEIGHT);

 myframe.setTitle("Button Tester");

 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");

 myframe.add(button);

54

Event handling

 class ClickListener implements ActionListener

 {

 public void actionPerformed(ActionEvent event)

 {

 System.out.println("I was clicked.");

 }

 }

 ActionListener listener = new ClickListener();

 button.addActionListener(listener);

 myframe.setVisible(true);

 }

}

55

Making buttons do more

This next example is from the book too, but I've changed the

BankAccount class to the BunnyFamily class. Why?

Because everybody likes bunnies.

Let's say we want to compute the growth in the number of

bunnies in my bunny family through successive clicks of a

button. (OK, it's a stretch, but it's still better than the boring

bank account example.)

We'd start with a BunnyFamily class, of course. It has a

method for retrieving the number of bunnies in the family,

and another method for increasing the number of bunnies

according to the Fibonacci numbers.

56

Fibonacci numbers

Leonardo Pisano (1170 - 1250), also known as Fibonacci,

came up with a model of growth in an idealised bunny (really)

population.

Assuming that

in the first month there is just one newly-born pair

new-born pairs become fertile from their second month

each month every fertile pair spawns a new pair, and

the bunnies never die

Then if we have A pairs of fertile and newly-born bunnies in

month N and we have B pairs in month N+1, then in month

N+2 we'll have A+B pairs.

57

Fibonacci numbers

The numbers for our purposes are 2, 3, 5, 8, 13, 21, 34 and so

on.

Fibonacci was wrong about the growth of bunny populations,

but his numbers live on in mathematical history.

58

Making buttons do more

public class BunnyFamily

{

 private int totalBunniesNow;

 private int totalBunniesLastTime;

 public BunnyFamily()

 {

 totalBunniesNow = 2; // first two numbers in the

 totalBunniesLastTime = 1; // Fibonacci sequence

 }

 public int getBunnies()

 {

 return totalBunniesNow;

 }

 public void updateBunnies()

 {

 totalBunniesNow = totalBunniesNow + totalBunniesLastTime;

 totalBunniesLastTime = totalBunniesNow - totalBunniesLastTime;

 }

}

59

Making buttons do more

We start by importing everything but the proverbial kitchen

sink. Then we create our frame window.

60

Making buttons do more

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JTextField;

public class BunnyGrowthViewer

{

 public static void main (String[] args)

 {

 JFrame frame = new JFrame();

 frame.setSize(400, 100);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Add Bunnies");

 final BunnyFamily mybunnies = new BunnyFamily();

61

Making buttons do more

We start by importing everything but the proverbial kitchen

sink. Then we create our frame window.

Next we create the button object.

62

Making buttons do more

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JTextField;

public class BunnyGrowthViewer

{

 public static void main (String[] args)

 {

 JFrame frame = new JFrame();

 frame.setSize(400, 100);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Add Bunnies");

 final BunnyFamily mybunnies = new BunnyFamily();

63

Making buttons do more

We start by importing everything but the proverbial kitchen

sink. Then we create our frame window.

Next we create the button object.

Now we instantiate a BunnyFamily and call the object

mybunnies. Why is it final? Because inner classes can

access local variables from the surrounding scope only if the

variables are final, and we're going to want to access some

local variables from the surrounding scope inside the inner

class. (Note that final doesn't keep the internal state of the

mybunnies object from changing...it only means that once

mybunnies holds a reference to a particular BunnyFamily

object, mybunnies cannot then be assigned a different

reference.)
64

Making buttons do more

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JTextField;

public class BunnyGrowthViewer

{

 public static void main (String[] args)

 {

 JFrame frame = new JFrame();

 frame.setSize(400, 100);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Add Bunnies");

 final BunnyFamily mybunnies = new BunnyFamily();

65

Making buttons do more

We need a user interface component that displays a

message containing the current number of bunnies. Such a

component is called a label. Here's how it's created...

66

Making buttons do more

 final JLabel label = new JLabel("bunnies = " +

 mybunnies.getBunnies());

 JPanel panel = new JPanel();

 panel.add(button);

 panel.add(label);

 frame.add(panel);

 class AddBunniesListener implements ActionListener

 {

 public void actionPerformed(ActionEvent event)

 {

 mybunnies.updateBunnies();

 label.setText("bunnies = " + mybunnies.getBunnies());

 }

 }

 ActionListener listener = new AddBunniesListener();

 button.addActionListener(listener);

 frame.setVisible(true);

 }

}

67

Making buttons do more

We need a user interface component that displays a

message containing the current number of bunnies. Such a

component is called a label. Here's how it's created...

We now want to put the button and label components in the

frame, but Java will place one on top of the other. Instead,

we create a panel object -- a panel is a container for other

user interface components -- and then add the panel to the

frame.

68

Making buttons do more

 final JLabel label = new JLabel("bunnies = " +

 mybunnies.getBunnies());

 JPanel panel = new JPanel();

 panel.add(button);

 panel.add(label);

 frame.add(panel);

 class AddBunniesListener implements ActionListener

 {

 public void actionPerformed(ActionEvent event)

 {

 mybunnies.updateBunnies();

 label.setText("bunnies = " + mybunnies.getBunnies());

 }

 }

 ActionListener listener = new AddBunniesListener();

 button.addActionListener(listener);

 frame.setVisible(true);

 }

}

69

Making buttons do more

We need a user interface component that displays a

message containing the current number of bunnies. Such a

component is called a label. Here's how it's created...

We now want to put the button and label components in the

frame, but Java will place one on top of the other. Instead,

we create a panel object -- a panel is a container for other

user interface components -- and then add the panel to the

frame.

Next we define our specific event listener class.

70

Making buttons do more

 final JLabel label = new JLabel("bunnies = " +

 mybunnies.getBunnies());

 JPanel panel = new JPanel();

 panel.add(button);

 panel.add(label);

 frame.add(panel);

 class AddBunniesListener implements ActionListener

 {

 public void actionPerformed(ActionEvent event)

 {

 mybunnies.updateBunnies();

 label.setText("bunnies = " + mybunnies.getBunnies());

 }

 }

 ActionListener listener = new AddBunniesListener();

 button.addActionListener(listener);

 frame.setVisible(true);

 }

}

71

Making buttons do more

We need a user interface component that displays a

message containing the current number of bunnies. Such a

component is called a label. Here's how it's created...

We now want to put the button and label components in the

frame, but Java will place one on top of the other. Instead,

we create a panel object -- a panel is a container for other

user interface components -- and then add the panel to the

frame.

Next we define our specific event listener class.

Then we create an event listener object and associate it with

the button. Finally, we make sure that everything is visible.

72

Making buttons do more

 final JLabel label = new JLabel("bunnies = " +

 mybunnies.getBunnies());

 JPanel panel = new JPanel();

 panel.add(button);

 panel.add(label);

 frame.add(panel);

 class AddBunniesListener implements ActionListener

 {

 public void actionPerformed(ActionEvent event)

 {

 mybunnies.updateBunnies();

 label.setText("bunnies = " + mybunnies.getBunnies());

 }

 }

 ActionListener listener = new AddBunniesListener();

 button.addActionListener(listener);

 frame.setVisible(true);

 }

}

