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News

■ Check your lab 7 grade
■ we haven’t yet handed out midterm solution, but the

window will close soon!

■ 5/70 midterm points is 1% of your course grade!

■ Yet a few more (but not all) Assignment 2s to hand
back after class

■ Assignment 3 due Friday Apr 7, 5pm
■ start now now now!

■ Final exam: Mon Apr 24, 3:30pm, HEBB TH

■ Evaluations today (beginning of class)
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Recap: Comparable

■ sort method that works on array of objects of
any type that implements Comparable
■ type guaranteed to have compareTo method

■ sorted
■ int
■ String
■ Bunny

■ revisit Bunny.compareTo: checking
dynamic type of object
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Recap: Multiple Interfaces

■ Classes can implement more than one
interface at once
■ contract to implement all abstract methods

defined in every interface it implements

public class MyClass implements Interface1, Interface2,
Interface3

{
}



5

Recap: Inheritance

■ Inheritance: process by which new class is
derived from existing one
■ fundamental principle of object-oriented

programming

■ Create new child class (subclass) that
extends existing parent one (superclass)

■ inherits all methods and variables
■ except constructor

■ can just add new variables and methods
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Recap: Inheritance and Constructors

■ Subclass (child class) inherits all methods except
constructor methods from superclass (parent class)

■ Using reserved word super in subclass constructor tells
Java to call appropriate constructor method of superclass

public class CokeMachine2000 extends CokeMachine2
{
  public CokeMachine2000() {
    super();
  } 
  public CokeMachine2000(int n) { 
    super(n);
  }
 public void loadCoke(int n)
  {
    numberOfCans = numberOfCans + n;
    System.out.println("Adding " + n + " cans to this machine");
  }
}
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Recap: Inheritance and Scope

■ Subclasses inherits but cannot directly access
private fields or variables of superclass

■ Protected variables can be directly accessed
from declaring class and any classes derived
from it
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Recap: Method Overriding

■ If child class defines method with same name
and signature as method in parent class
■ say child's version overrides parent's version

in favor of its own
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Recap: Object Behind the Scenes

■ All classes that aren't explicitly extended from
a named class are by default extended from
Object class

■ Object class includes a toString() method

■ so... class header
     public class myClass

■ is actually same as
     public class myClass extends Object
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Recap: Overriding Variables

■ You can, but you shouldn't

■ Possible for child class to declare variable
with same name as variable inherited from
parent class
■ one in child class is called shadow variable

■ confuses everyone!

■ Child class already can gain access to
inherited variable with same name
■ there's no good reason to declare new

variable with the same name
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Recap: Method Overloading and Overriding

■ Method overloading: "easy" polymorphism
■ in any class can use same name for several different

(but hopefully related) methods

■ methods must have different signatures so that
compiler can tell which one is intended

■ Method overriding: "complicated“ polymorphism
■ subclass has method with same signature as a

method in the superclass

■ method in derived class overrides method in
superclass

■ resolved at execution time, not compilation time
■ some call it true polymorphism
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Objectives

■ Understanding when and how to use abstract
classes

■ Understanding tradeoffs between interfaces
and inheritance
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A New Wrinkle

■ Expand vending machine
empire to include French fry
machines
■ is a French fry machine a

subclass of Coke Machine?
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If We Have This Class Hierarchy...

Coke
Machine

Coke
Machine2000

Coke
MachineUA

is-a

is-a
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...Does This Make Sense?

Coke
Machine

Coke
Machine2000

Coke
MachineUA

French Fry
Machine

is-a is-a

is-a
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Does This Make More Sense?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a
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Does This Make More Sense?

■ Yes
■ especially if we're thinking of adding

all kinds of vending machines...

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a



18

Does This Make More Sense?

■ Yes

■ especially if we're thinking of adding all
kinds of vending machines...

■ want our classes to be more specific as
we go down class hierarchy

■  is French Fry Machine more or less
specific than Coke Machine?

■ neither, both specific versions of generic
Vending Machine class

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a
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Does This Make More Sense?

■ One way: make a VendingMachine
interface like last week

■ Another way...

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a
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Inheritance Solution
public class GenericVendingMachine
{
  private int numberOfItems;
  private double cashIn;

  public GenericVendingMachine()
  {
    numberOfItems = 0;
  }

  public boolean vendItem()
  {
    boolean result;
    if (numberOfItems > 0)
    {
      numberOfItems--;
      result = true;
    }
    else
    {
      result = false;
    }
    return result;
  }
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Inheritance Solution
  public void loadItems(int n)
  {
    numberOfItems = n;
  }

  public int getNumberOfItems()
  {
    return numberOfItems;
  }

}
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Inheritance Solution
public class CokeMachine3 extends GenericVendingMachine
{
  public CokeMachine3()
  {
    super();
  }

  public CokeMachine3(int n)
  {
    super();
    this.loadItems(n);
  }

  public void buyCoke()
  {
    if (this.vendItem())
    {
      System.out.println("Have a nice frosty Coca-Cola!");
      System.out.println(this.getNumberOfItems() + " cans of Coke remaining");
    }
    else
    {
      System.out.println("Sorry, sold out");
    }
  }
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Inheritance Solution
  public void loadCoke(int n)
  {
    this.loadItems(this.getNumberOfItems() + n);
    System.out.println("Adding " + n +
                       " ice cold cans of Coke to this machine");
  }
}



24

Inheritance Solution
public class CokeMachine2000 extends CokeMachine3
{
  public CokeMachine2000()
  {
    super();
  }

  public CokeMachine2000(int n)
  {
    super();
    this.loadItems(n);
  }

  public void loadCoke(int n)
  {
    super.loadCoke(n);
    System.out.println("Loading in the new millennium!");
  }
}
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Inheritance From Generic Objects

■ Want generic VendingMachine class
■ don’t actually use to generate objects

■ use as template for specific actual
classes like FrenchFryMachine and
CokeMachine

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a
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Inheritance From Generic Objects

■ Will we ever want to instantiate a generic
Vending Machine class?
■ will we ever need to make generic

Vending Machine object?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a
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Inheritance From Generic Objects

■ Will we ever want to instantiate a generic
Vending Machine class?
■ will we ever need to make generic

Vending Machine object?

■ No, not in our simulated vending world!

■ How would we use one?  What would be
a real-life equivalent?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a
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Inheritance From Generic Objects

■ Introduced CokeMachineUA to combat
vandalism and theft

■ Could just add vandalize() methods to CM,
CM2000, CMUA
■ but we want to ensure that all Vending

Machines have vandalize() methods

■ want all of them to be different
■ if put into base class at top, easy to have them

identical

■ no way to force method overriding
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Abstract Classes

■ Abstract class: not completely implemented

■ Usually contains one or more abstract methods
■ has no definition: specifies method that should be implemented

by subclasses

■ just has header, does not provide actual implementation for
that method

■ Abstract class uses abstract methods to specify what
interface to descendant classes must look like
■ without providing implementation details for methods that

make up interface

■ Example:  require that all subclasses of  VendingMachine
class implement  vandalize() method
■ method might differ greatly between one subclass and another

■ use an abstract method
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Abstract Classes

■ Abstract classes serve as place holders in class
hierarchy

■ Abstract class typically used as partial description
inherited by all its descendants

■ Description insufficient to be useful by itself
■ cannot instantiated if defined properly

■ Descendent classes supply additional information
so that instantiation is meaningful
■ abstract class is generic concept in class hierarchy
■ class becomes abstract by including the abstract

modifier in class header
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Abstract Classes

■ Use abstract class for generic template
■ can use abstract methods

■ Making abstract method
■ Use restricted word abstract in method

header

■ do not provide a method body

■ just end method header with semicolon
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Vending Machine Class Revisited
public abstract class VendingMachine
{
  private int numberOfItems;

  public VendingMachine()
  {
    numberOfItems = 0;
  }

  public boolean vend()
  {
    boolean result;
    if (numberOfItems > 0)
    {
      numberOfItems--;
      result = true;
    }
    else
    {
      result = false;
    }
    return result;
  }

  public abstract void vandalize();

}
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Abstract Methods and Abstract Classes

■  What happens when we try to compile it all now?
■ Java tells us that there's an abstract class we have to

implement
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Abstract Methods and Abstract Classes

■  What happens when we try to compile it all now?
■ Java tells us that there's an abstract class we have to

implement

■ Could put this CokeMachine class:
public void vandalize()

     {
       System.out.println("Take all my money, and have a Coke too");
     }
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Abstract Methods and Abstract Classes

■  What happens when we try to compile it all now?
■ Java tells us that there's an abstract class we have to

implement

■ Could put this CokeMachine class:
public void vandalize()

     {
       System.out.println("Take all my money, and have a Coke too");
     }

■ Do we have to implement method in
CokeMachine2000 and CokeMachineUA classes
too?
■ Yes, if we want them to behave differently when

they're vandalized
■ original intent
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Which Organization?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

implements implements

extends

Coke
MachineUA

extends

 

Pizza
Machine

Beer
Machine

implements implements
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Which Organization?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

extends extends

extends

Coke
MachineUA

extends

 

Pizza
Machine

Beer
Machine

extends extends
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Interfaces vs. Abstract Classes

■ If we can have abstract class that contains only
abstract methods, why do we need  interfaces?
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Interfaces vs. Abstract Classes

■ If we can have abstract class that contains only
abstract methods, why do we need  interfaces?
■ Java does not support multiple inheritance: child

classes inheriting attributes from multiple parent
classes

■ other object-oriented languages do

■ multiple inheritance can be good, but  causes
problems

■ what if child class inherits two different methods with
same signature from two different parents?

■ which one should be used?
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Interfaces vs. Abstract Classes

■ Java's formal interface provides some of the utility of
multiple inheritance without the problems
■ class can implement more than one interface

■ can do this at same time it extends class

■ Interface allows us to create classes that "inherit"
features from multiple places
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Interfaces vs. Abstract Classes

■ Java's formal interface provides some of the utility of
multiple inheritance without the problems
■ class can implement more than one interface

■ can do this at same time it extends class

■ Interface allows us to create classes that "inherit"
features from multiple places

■ Why is problem from previous slide solved?
■ might have multiple method headers with same

signature
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Interfaces vs. Abstract Classes

■ Java's formal interface provides some of the utility of
multiple inheritance without the problems
■ class can implement more than one interface

■ can do this at same time it extends class

■ Interface allows us to create classes that "inherit"
features from multiple places

■ Why is problem from previous slide solved?
■ might have multiple method headers with same

signature

■ but only one will have an actual definition
■ no ambiguity on which will be used

■ but still could be problem with different return types
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Interfaces vs. Abstract Classes

■ Another useful feature provided by interfaces:
■ inheritance happens between classes that are

related

■ But classes can implement completely unrelated
interfaces

■ and that can be useful
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Interfaces vs. Abstract Classes

■ Another useful feature provided by interfaces:
■ inheritance happens between classes that are

related

■ But classes can implement completely unrelated
interfaces

■ and that can be useful

■ Example: implement interfaces for
■ computer, printer, cell phone, vending machine

■ create class for new interactive vending machines
that:

■ vend Cokes, show annoying music videos, phone their
owner when they're running low on product, and spit
out coupons for free prizes
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How Interfaces Differ From Abstract Classes

■ Abstract class is incomplete class that requires
further specialization
■ interface is just specification or prescription for

behavior

from Just Java 2 by Peter van der Linden
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How Interfaces Differ From Abstract Classes

■ Abstract class is incomplete class that requires
further specialization
■ interface is just specification or prescription for

behavior

■ Inheritance implies specialization, interface does not
■ interface just implies "We need something that does

'foo' and here are ways that users should be able to
call it.“

from Just Java 2 by Peter van der Linden
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How Interfaces Differ From Abstract Classes

■ Abstract class is incomplete class that requires
further specialization
■ interface is just specification or prescription for

behavior

■ Inheritance implies specialization, interface does not
■ interface just implies "We need something that does

'foo' and here are ways that users should be able to
call it.“

■ Class can implement several interfaces at once
■ but class can extend only one parent class

from Just Java 2 by Peter van der Linden
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Interfaces vs. Abstract Classes: Bottom Line

■ Use abstract class to initiate a hierarchy of
more specialized classes

■ Use interface to say, "I need to be able to call
methods with these signatures in your class."

■ Use an interface for some semblance of
multiple inheritance

from Just Java 2 by Peter van der Linden
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Interfaces vs. Abstract Classes

■ Interface can only extend another interface
■ cannot extend abstract class or "concrete"

class

■ Class can legally implement only some
methods of interface if it’s abstract class
■ then must be further extended through

inheritance before can be instantiated

from Just Java 2 by Peter van der Linden
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Who Can Do What?

■ Interface can be implemented only by class or
abstract class

■ Interface can be extended only by another interface

■ Class can be extended only by class or abstract
class

■ Abstract class can be extended only by class or
abstract class

■ Only classes can be instantiated as objects
■ Interfaces are not classes and cannot be instantiated

■ Abstract classes may have undefined methods and
cannot be instantiated


