
1

University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Inheritance II

Lecture 23, Thu Mar 30 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

2

News

■ Check your lab 7 grade
■ we haven’t yet handed out midterm solution, but the

window will close soon!

■ 5/70 midterm points is 1% of your course grade!

■ Yet a few more (but not all) Assignment 2s to hand
back after class

■ Assignment 3 due Friday Apr 7, 5pm
■ start now now now!

■ Final exam: Mon Apr 24, 3:30pm, HEBB TH

■ Evaluations today (beginning of class)

3

Recap: Comparable

■ sort method that works on array of objects of
any type that implements Comparable
■ type guaranteed to have compareTo method

■ sorted
■ int
■ String
■ Bunny

■ revisit Bunny.compareTo: checking
dynamic type of object

4

Recap: Multiple Interfaces

■ Classes can implement more than one
interface at once
■ contract to implement all abstract methods

defined in every interface it implements

public class MyClass implements Interface1, Interface2,
Interface3

{
}

5

Recap: Inheritance

■ Inheritance: process by which new class is
derived from existing one
■ fundamental principle of object-oriented

programming

■ Create new child class (subclass) that
extends existing parent one (superclass)

■ inherits all methods and variables
■ except constructor

■ can just add new variables and methods

6

Recap: Inheritance and Constructors

■ Subclass (child class) inherits all methods except
constructor methods from superclass (parent class)

■ Using reserved word super in subclass constructor tells
Java to call appropriate constructor method of superclass

public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000() {
 super();
 }
 public CokeMachine2000(int n) {
 super(n);
 }
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

7

Recap: Inheritance and Scope

■ Subclasses inherits but cannot directly access
private fields or variables of superclass

■ Protected variables can be directly accessed
from declaring class and any classes derived
from it

8

Recap: Method Overriding

■ If child class defines method with same name
and signature as method in parent class
■ say child's version overrides parent's version

in favor of its own

9

Recap: Object Behind the Scenes

■ All classes that aren't explicitly extended from
a named class are by default extended from
Object class

■ Object class includes a toString() method

■ so... class header
 public class myClass

■ is actually same as
 public class myClass extends Object

10

Recap: Overriding Variables

■ You can, but you shouldn't

■ Possible for child class to declare variable
with same name as variable inherited from
parent class
■ one in child class is called shadow variable

■ confuses everyone!

■ Child class already can gain access to
inherited variable with same name
■ there's no good reason to declare new

variable with the same name

11

Recap: Method Overloading and Overriding

■ Method overloading: "easy" polymorphism
■ in any class can use same name for several different

(but hopefully related) methods

■ methods must have different signatures so that
compiler can tell which one is intended

■ Method overriding: "complicated“ polymorphism
■ subclass has method with same signature as a

method in the superclass

■ method in derived class overrides method in
superclass

■ resolved at execution time, not compilation time
■ some call it true polymorphism

12

Objectives

■ Understanding when and how to use abstract
classes

■ Understanding tradeoffs between interfaces
and inheritance

13

A New Wrinkle

■ Expand vending machine
empire to include French fry
machines
■ is a French fry machine a

subclass of Coke Machine?

14

If We Have This Class Hierarchy...

Coke
Machine

Coke
Machine2000

Coke
MachineUA

is-a

is-a

15

...Does This Make Sense?

Coke
Machine

Coke
Machine2000

Coke
MachineUA

French Fry
Machine

is-a is-a

is-a

16

Does This Make More Sense?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

17

Does This Make More Sense?

■ Yes
■ especially if we're thinking of adding

all kinds of vending machines...

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

18

Does This Make More Sense?

■ Yes

■ especially if we're thinking of adding all
kinds of vending machines...

■ want our classes to be more specific as
we go down class hierarchy

■ is French Fry Machine more or less
specific than Coke Machine?

■ neither, both specific versions of generic
Vending Machine class

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a

19

Does This Make More Sense?

■ One way: make a VendingMachine
interface like last week

■ Another way...

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a

20

Inheritance Solution
public class GenericVendingMachine
{
 private int numberOfItems;
 private double cashIn;

 public GenericVendingMachine()
 {
 numberOfItems = 0;
 }

 public boolean vendItem()
 {
 boolean result;
 if (numberOfItems > 0)
 {
 numberOfItems--;
 result = true;
 }
 else
 {
 result = false;
 }
 return result;
 }

21

Inheritance Solution
 public void loadItems(int n)
 {
 numberOfItems = n;
 }

 public int getNumberOfItems()
 {
 return numberOfItems;
 }

}

22

Inheritance Solution
public class CokeMachine3 extends GenericVendingMachine
{
 public CokeMachine3()
 {
 super();
 }

 public CokeMachine3(int n)
 {
 super();
 this.loadItems(n);
 }

 public void buyCoke()
 {
 if (this.vendItem())
 {
 System.out.println("Have a nice frosty Coca-Cola!");
 System.out.println(this.getNumberOfItems() + " cans of Coke remaining");
 }
 else
 {
 System.out.println("Sorry, sold out");
 }
 }

23

Inheritance Solution
 public void loadCoke(int n)
 {
 this.loadItems(this.getNumberOfItems() + n);
 System.out.println("Adding " + n +
 " ice cold cans of Coke to this machine");
 }
}

24

Inheritance Solution
public class CokeMachine2000 extends CokeMachine3
{
 public CokeMachine2000()
 {
 super();
 }

 public CokeMachine2000(int n)
 {
 super();
 this.loadItems(n);
 }

 public void loadCoke(int n)
 {
 super.loadCoke(n);
 System.out.println("Loading in the new millennium!");
 }
}

25

Inheritance From Generic Objects

■ Want generic VendingMachine class
■ don’t actually use to generate objects

■ use as template for specific actual
classes like FrenchFryMachine and
CokeMachine

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

26

Inheritance From Generic Objects

■ Will we ever want to instantiate a generic
Vending Machine class?
■ will we ever need to make generic

Vending Machine object?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a

27

Inheritance From Generic Objects

■ Will we ever want to instantiate a generic
Vending Machine class?
■ will we ever need to make generic

Vending Machine object?

■ No, not in our simulated vending world!

■ How would we use one? What would be
a real-life equivalent?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

Pizza
Machine

Beer
Machine

is-a is-a

28

Inheritance From Generic Objects

■ Introduced CokeMachineUA to combat
vandalism and theft

■ Could just add vandalize() methods to CM,
CM2000, CMUA
■ but we want to ensure that all Vending

Machines have vandalize() methods

■ want all of them to be different
■ if put into base class at top, easy to have them

identical

■ no way to force method overriding

29

Abstract Classes

■ Abstract class: not completely implemented

■ Usually contains one or more abstract methods
■ has no definition: specifies method that should be implemented

by subclasses

■ just has header, does not provide actual implementation for
that method

■ Abstract class uses abstract methods to specify what
interface to descendant classes must look like
■ without providing implementation details for methods that

make up interface

■ Example: require that all subclasses of VendingMachine
class implement vandalize() method
■ method might differ greatly between one subclass and another

■ use an abstract method

30

Abstract Classes

■ Abstract classes serve as place holders in class
hierarchy

■ Abstract class typically used as partial description
inherited by all its descendants

■ Description insufficient to be useful by itself
■ cannot instantiated if defined properly

■ Descendent classes supply additional information
so that instantiation is meaningful
■ abstract class is generic concept in class hierarchy
■ class becomes abstract by including the abstract

modifier in class header

31

Abstract Classes

■ Use abstract class for generic template
■ can use abstract methods

■ Making abstract method
■ Use restricted word abstract in method

header

■ do not provide a method body

■ just end method header with semicolon

32

Vending Machine Class Revisited
public abstract class VendingMachine
{
 private int numberOfItems;

 public VendingMachine()
 {
 numberOfItems = 0;
 }

 public boolean vend()
 {
 boolean result;
 if (numberOfItems > 0)
 {
 numberOfItems--;
 result = true;
 }
 else
 {
 result = false;
 }
 return result;
 }

 public abstract void vandalize();

}

33

Abstract Methods and Abstract Classes

■ What happens when we try to compile it all now?
■ Java tells us that there's an abstract class we have to

implement

34

Abstract Methods and Abstract Classes

■ What happens when we try to compile it all now?
■ Java tells us that there's an abstract class we have to

implement

■ Could put this CokeMachine class:
public void vandalize()

 {
 System.out.println("Take all my money, and have a Coke too");
 }

35

Abstract Methods and Abstract Classes

■ What happens when we try to compile it all now?
■ Java tells us that there's an abstract class we have to

implement

■ Could put this CokeMachine class:
public void vandalize()

 {
 System.out.println("Take all my money, and have a Coke too");
 }

■ Do we have to implement method in
CokeMachine2000 and CokeMachineUA classes
too?
■ Yes, if we want them to behave differently when

they're vandalized
■ original intent

36

Which Organization?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

implements implements

extends

Coke
MachineUA

extends

Pizza
Machine

Beer
Machine

implements implements

37

Which Organization?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

extends extends

extends

Coke
MachineUA

extends

Pizza
Machine

Beer
Machine

extends extends

38

Interfaces vs. Abstract Classes

■ If we can have abstract class that contains only
abstract methods, why do we need interfaces?

39

Interfaces vs. Abstract Classes

■ If we can have abstract class that contains only
abstract methods, why do we need interfaces?
■ Java does not support multiple inheritance: child

classes inheriting attributes from multiple parent
classes

■ other object-oriented languages do

■ multiple inheritance can be good, but causes
problems

■ what if child class inherits two different methods with
same signature from two different parents?

■ which one should be used?

40

Interfaces vs. Abstract Classes

■ Java's formal interface provides some of the utility of
multiple inheritance without the problems
■ class can implement more than one interface

■ can do this at same time it extends class

■ Interface allows us to create classes that "inherit"
features from multiple places

41

Interfaces vs. Abstract Classes

■ Java's formal interface provides some of the utility of
multiple inheritance without the problems
■ class can implement more than one interface

■ can do this at same time it extends class

■ Interface allows us to create classes that "inherit"
features from multiple places

■ Why is problem from previous slide solved?
■ might have multiple method headers with same

signature

42

Interfaces vs. Abstract Classes

■ Java's formal interface provides some of the utility of
multiple inheritance without the problems
■ class can implement more than one interface

■ can do this at same time it extends class

■ Interface allows us to create classes that "inherit"
features from multiple places

■ Why is problem from previous slide solved?
■ might have multiple method headers with same

signature

■ but only one will have an actual definition
■ no ambiguity on which will be used

■ but still could be problem with different return types

43

Interfaces vs. Abstract Classes

■ Another useful feature provided by interfaces:
■ inheritance happens between classes that are

related

■ But classes can implement completely unrelated
interfaces

■ and that can be useful

44

Interfaces vs. Abstract Classes

■ Another useful feature provided by interfaces:
■ inheritance happens between classes that are

related

■ But classes can implement completely unrelated
interfaces

■ and that can be useful

■ Example: implement interfaces for
■ computer, printer, cell phone, vending machine

■ create class for new interactive vending machines
that:

■ vend Cokes, show annoying music videos, phone their
owner when they're running low on product, and spit
out coupons for free prizes

45

How Interfaces Differ From Abstract Classes

■ Abstract class is incomplete class that requires
further specialization
■ interface is just specification or prescription for

behavior

from Just Java 2 by Peter van der Linden

46

How Interfaces Differ From Abstract Classes

■ Abstract class is incomplete class that requires
further specialization
■ interface is just specification or prescription for

behavior

■ Inheritance implies specialization, interface does not
■ interface just implies "We need something that does

'foo' and here are ways that users should be able to
call it.“

from Just Java 2 by Peter van der Linden

47

How Interfaces Differ From Abstract Classes

■ Abstract class is incomplete class that requires
further specialization
■ interface is just specification or prescription for

behavior

■ Inheritance implies specialization, interface does not
■ interface just implies "We need something that does

'foo' and here are ways that users should be able to
call it.“

■ Class can implement several interfaces at once
■ but class can extend only one parent class

from Just Java 2 by Peter van der Linden

48

Interfaces vs. Abstract Classes: Bottom Line

■ Use abstract class to initiate a hierarchy of
more specialized classes

■ Use interface to say, "I need to be able to call
methods with these signatures in your class."

■ Use an interface for some semblance of
multiple inheritance

from Just Java 2 by Peter van der Linden

49

Interfaces vs. Abstract Classes

■ Interface can only extend another interface
■ cannot extend abstract class or "concrete"

class

■ Class can legally implement only some
methods of interface if it’s abstract class
■ then must be further extended through

inheritance before can be instantiated

from Just Java 2 by Peter van der Linden

50

Who Can Do What?

■ Interface can be implemented only by class or
abstract class

■ Interface can be extended only by another interface

■ Class can be extended only by class or abstract
class

■ Abstract class can be extended only by class or
abstract class

■ Only classes can be instantiated as objects
■ Interfaces are not classes and cannot be instantiated

■ Abstract classes may have undefined methods and
cannot be instantiated

