
1

University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Interfaces, Inheritance

Lecture 22, Tue Mar 28 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

2

News

■ labs last week
■ still time to work through lab 7 (midterm correction)

■ can earn back up to 5 out of 70 points

■ rest of Assignment 2 handed back at end of class

■ Assignment 3 posted
■ due Friday Apr 7, 5pm

■ start now, don’t wait!

3

Reading

■ This week: Chap 13, except 13.8.3

4

Recap: Polymorphism

■ reference to interface type can reference
instance of any class implementing that
interface
■ static type: type that variable declared to be

■ determines which members of class can be
invoked

■ dynamic type: type that variable actually
references
■ determines which version of method is called

5

Correction/Recap: Interfaces as Contract

■ Can write code that works on anything that
fulfills contract
■ even classes that don’t exist yet!

■ Example: Comparable
■ useful if you need to sort items
■ compareTo(object)

■ returns int < 0 if this object less than parameter

■ returns 0 if same

■ returns int > 0 if this object greater than
parameter

6

Recap: Wrappers

■ Many classes implement Comparable
interface
■ Byte, Character, Double, Float, Integer, Long,

Short, String

■ each implements own version of compareTo

■ Wrapper classes
■ wraps up (encapsulates) primitive type

■ Double: object wrapping primitive double
■ No: sort(double[] myData);

■ Yes: sort(Double[] myData);

7

Comparable

■ sort method that works on array of objects of
any type that implements Comparable
■ type guaranteed to have compareTo method

■ we need to sort
■ int
■ String
■ Bunny
■ Giraffe
■ ...

8

Multiple Interfaces

■ Classes can implement more than one
interface at once
■ contract to implement all abstract methods

defined in every interface it implements

public class MyClass implements Interface1, Interface2,
Interface3

{
}

9

Objectives

■ Understanding inheritance
■ and class hierarchies

■ Understanding method overriding
■ and difference with method overloading

■ Understanding when and how to use abstract
classes

10

Vending Science Marches On...

■ CokeMachine2 class had limited functionality
■ buyCoke()

■ what if run out of cans?

■ Let’s build the Next Generation
■ just like old ones, but add new exciting

loadCoke() functionality

■ How do we create

CokeMachine2000

11

public class CokeMachine2 {
 private static int totalMachines = 0;
 private int numberOfCans;

 public CokeMachine2() {
 numberOfCans = 10;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }
 public CokeMachine2(int n) {
 numberOfCans = n;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }
 public static int getTotalMachines() { return totalMachines; }
 public int getNumberOfCans() { return numberOfCans; }
 public void buyCoke() {
 if (numberOfCans > 0) {
 numberOfCans = numberOfCans - 1;
 System.out.println("Have a Coke");
 System.out.print(numberOfCans);
 System.out.println(" cans remaining");
 } else {
 System.out.println("Sold Out");
 }
 }
}

Reminder: CokeMachine2

12

public class CokeMachine2000 {
 private static int totalMachines = 0;
 private int numberOfCans;

 public CokeMachine2000() {
 numberOfCans = 10;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }
 public CokeMachine2000(int n) {
 numberOfCans = n;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }
 public static int getTotalMachines() { return totalMachines; }
 public int getNumberOfCans() { return numberOfCans; }
 public void buyCoke() {
 if (numberOfCans > 0) {
 numberOfCans = numberOfCans - 1;
 System.out.println("Have a Coke");
 System.out.print(numberOfCans);
 System.out.println(" cans remaining");
 } else {
 System.out.println("Sold Out");
 }
 }

One Way: Copy CM2, Change Name, ...

13

 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n:
 System.out.println("Adding " + n " " cans to this machine");
 }

}

...Then Add New Method

14

public class SimCoke2000
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2000 chan = new CokeMachine2000(1);
 cs.buyCoke();
 engr.buyCoke();
 chan.buyCoke();
 chan.loadCoke(150);
 chan.buyCoke();
 }
}

Update The SimCoke Program

15

> java SimCoke2000
Coke machine simulator
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 237 cans of Coke
Adding another machine to your empire with 1 cans of Coke
Have a Coke
9 cans remaining
Have a Coke
236 cans remaining
Have a Coke
0 cans remaining
Adding 150 cans to this machine
Have a Coke
149 cans remaining

It Works!

16

...to create a new and improved CokeMachine class from the
old CokeMachine class without copying all the code?

Is There An Easier Way...

17

...to create a new and improved CokeMachine class from the
old CokeMachine class without copying all the code?

No.

Is There An Easier Way...

18

...to create a new and improved CokeMachine class from the
old CokeMachine class without copying all the code?

No. OK, I lied. There is an easier way. I'm just checking to
see if you're awake.

Here's how easy it is. We use the reserved word extends
like this...

Is There An Easier Way...

19

Easier Way (First Pass)

■ Create new class called CokeMachine2000
■ inherits all methods and variables from CokeMachine2

■ mostly true...we'll see some exceptions later

■ can just add new variables and methods

■ Inheritance: process by which new class is derived from
existing one
■ fundamental principle of object-oriented programming

public class CokeMachine2000 extends CokeMachine2
{
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }

}

20

Easier Way (First Pass)

■ Variables and methods in CokeMachine2 class definition are
included in the CokeMachine2000 definition
■ even though you can’t see them

■ just because of word extends

public class CokeMachine2000 extends CokeMachine2
{
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }

}

21

public class SimCoke2000
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2000 chan = new CokeMachine2000(1);
 cs.buyCoke();
 engr.buyCoke();
 chan.buyCoke();
 chan.loadCoke(150);
 chan.buyCoke();
 }
}

1 error found:
File: SimCoke2000.java [line: 8]
Error: cannot resolve symbol
symbol : constructor CokeMachine2000 (int)
location: class CokeMachine2000

Testing With SimCoke

OOPS! What happened?

22

Easier Way (Second Pass)

■ Subclass (child class) inherits all methods except
constructor methods from superclass (parent class)

■ Using reserved word super in subclass constructor tells
Java to call appropriate constructor method of superclass
■ also makes our intentions with respect to constructors explicit

public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000() {
 super();
 }
 public CokeMachine2000(int n) {
 super(n);
 }
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

23

Testing Second Pass
public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000()
 {
 super();
 }

 public CokeMachine2000(int n)
 {
 super(n);
 }

 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

2 errors found:
File: CokeMachine2000.java [line: 15]
Error: numberOfCans has private access in CokeMachine2
File: CokeMachine2000.java [line: 15]
Error: numberOfCans has private access in CokeMachine2

24

Easier Way (Third Pass)

■ Subclass inherits all variables of superclass

■ But private variables cannot be directly accessed, even from
subclass

public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000() {
 super();
 }
 public CokeMachine2000(int n) {
 super(n);
 }
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

public class CokeMachine2
{
 private static int totalMachines = 0;
 private int numberOfCans;

25

Easier Way (Third Pass)

■ Simple fix: change access modifier to protected in
superclass definition
■ protected variables can be directly accessed from declaring class

and any classes derived from it

public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000() {
 super();
 }
 public CokeMachine2000(int n) {
 super(n);
 }
 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("Adding " + n + " cans to this machine");
 }
}

public class CokeMachine2
{
 private static int totalMachines = 0;
 protected int numberOfCans;

 ...

26

public class SimCoke2000
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2000 chan = new CokeMachine2000(1);
 cs.buyCoke();
 engr.buyCoke();
 chan.buyCoke();
 chan.loadCoke(150);
 chan.buyCoke();
 }
}

Testing With SimCoke

27

public class SimCoke2000
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2000 chan = new CokeMachine2000(1);
 cs.buyCoke();
 engr.buyCoke();
 chan.buyCoke();
 chan.loadCoke(150);
 chan.buyCoke();
 }
}

Testing With SimCoke

> java SimCoke2000
Coke machine simulator
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 237 cans of Coke
Adding another machine to your empire with 1 cans of Coke
Have a Coke
9 cans remaining
Have a Coke
236 cans remaining
Have a Coke
0 cans remaining
Adding 150 cans to this machine
Have a Coke
149 cans remaining
>

28

Some Coke Machine History

early Coke Machine

• mechanical
• sealed unit, must be reloaded
 at factory
• no protection against vandalism

29

Some Coke Machine History

Coke Machine 2000

• electro-mechanical
• can be reloaded on site
• little protection against vandalism

30

Some Coke Machine History

Coke Machine UA*

• prototype cyberhuman intelligent
 mobile autonomous vending
 machine
• can reload itself in transit
• vandalism? bring it on

* Urban Assault

31

Some Coke Machine History

Coke Machine UA

Assuming that previous generation
CokeMachine simulations have wimpy
vandalize() methods built-in to
model their gutless behavior when
faced with a crowbar-wielding human,
how do we create the UA class with
true vandal deterrence?

32

Method Overriding

■ If child class defines method with same name
and signature as method in parent class
■ say child's version overrides parent's version

in favor of its own

33

Method Overriding

public class CokeMachine2
{
 private static int totalMachines = 0;
 protected int numberOfCans;

 public CokeMachine2()
 {
 numberOfCans = 10;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }

 public CokeMachine2(int n)
 {
 numberOfCans = n;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }

 public static int getTotalMachines()
 {
 return totalMachines;
 }

34

Method Overriding

 public int getNumberOfCans()
 {
 return numberOfCans;
 }

 public void buyCoke()
 {
 if (numberOfCans > 0)
 {
 numberOfCans = numberOfCans - 1;
 System.out.println("Have a Coke");
 System.out.print(numberOfCans);
 System.out.println(" cans remaining");
 }
 else
 {
 System.out.println("Sold Out");
 }
 }

 public void vandalize()
 {
 System.out.println("Please don't hurt me...take all my money");
 }
}

35

Method Overriding

public class CokeMachine2000 extends CokeMachine2
{
 public CokeMachine2000()
 {
 super();
 }

 public CokeMachine2000(int n)
 {
 super(n);
 }

 public void loadCoke(int n)
 {
 numberOfCans = numberOfCans + n;
 System.out.println("loading " + n + " cans");
 }

 public void vandalize() // this overrides the vandalize method from parent
 {
 System.out.println("Stop it! Never mind, here's my money");
 }

}

36

Method Overriding

public class CokeMachineUA extends CokeMachine2000
{
 public CokeMachineUA()
 {
 super();
 }

 public CokeMachineUA(int n)
 {
 super(n);
 }

 public void vandalize() // this overrides the vandalize method from parent
 {
 System.out.println("Eat lead and die, you slimy Pepsi drinker!!");
 }
}

37

Method Overriding

public class SimVend
{
 public static void main (String[] args)
 {
 CokeMachine2[] mymachines = new CokeMachine2[5];
 mymachines[0] = new CokeMachine2();
 mymachines[1] = new CokeMachine2000();
 mymachines[2] = new CokeMachineUA();

 for (int i = 0; i < mymachines.length; i++)
 {
 if (mymachines[i] != null)
 {
 mymachines[i].vandalize();
 }
 }
 }
}

> java SimVend
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 10 cans of Coke
Please don't hurt me...take all my money
Stop it! Never mind, here's my money.
Eat lead and die, you slimy Pepsi drinker!!

38

Method Overriding

■ If child class defines method with same name
and signature as method in parent class
■ say child's version overrides parent's version

in favor of its own
■ reminder: signature is number, type, and order

of parameters

■ Writing our own toString() method for class
overrides existing, inherited toString()
method
■ Where was it inherited from?

39

Method Overriding

■ Where was it inherited from?
■ All classes that aren't explicitly extended from

a named class are by default extended from
Object class

■ Object class includes a toString() method

■ so... class header
 public class myClass

■ is actually same as
 public class myClass extends Object

40

Overriding Variables

■ You can, but you shouldn't

41

Overriding Variables

■ You can, but you shouldn't

■ Possible for child class to declare variable
with same name as variable inherited from
parent class
■ one in child class is called shadow variable

■ confuses everyone!

■ Child class already can gain access to
inherited variable with same name
■ there's no good reason to declare new

variable with the same name

42

Another View of Polymorphism

■ From Just Java 2 by Peter van der Linden:
■ Polymorphism is a complicated name for a

straightforward concept. It merely means
using the same one name to refer to different
methods. "Name reuse" would be a better
term.

■ Polymorphism made possible in Java through
method overloading and method overriding
■ remember method overloading?

43

Method Overloading and Overriding

■ Method overloading: "easy" polymorphism
■ in any class can use same name for several different

(but hopefully related) methods

■ methods must have different signatures so that
compiler can tell which one is intended

■ Method overriding: "complicated“ polymorphism
■ subclass has method with same signature as a

method in the superclass

■ method in derived class overrides method in
superclass

■ resolved at execution time, not compilation time
■ some call it true polymorphism

44

A New Wrinkle

■ Expand vending machine
empire to include French fry
machines
■ is a French fry machine a

subclass of Coke Machine?

45

If We Have This Class Hierarchy...

Coke
Machine

Coke
Machine2000

Coke
MachineUA

is-a

is-a

46

...Does This Make Sense?

Coke
Machine

Coke
Machine2000

Coke
MachineUA

French Fry
Machine

is-a is-a

is-a

47

Does This Make More Sense?

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

48

Does This Make More Sense?

■ Want generic VendingMachine class
■ don’t actually use to generate objects

■ use as template for specific actual
classes like FrenchFryMachine and
CokeMachine

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

49

Does This Make More Sense?

■ Want generic VendingMachine class
■ don’t actually use to generate objects

■ use as template for specific actual
classes like FrenchFryMachine and
CokeMachine

■ One way: make a VendingMachine
interface like last week

■ Another way...

Generic
Vending
Machine

Coke
Machine

Coke
Machine2000

French Fry
Machine

is-a is-a

is-a

Coke
MachineUA

is-a

50

Abstract Classes

■ Abstract classes serve as place holders in class
hierarchy

■ Abstract class typically used as partial description
inherited by all its descendants

■ Description insufficient to be useful by itself
■ cannot instantiated if defined properly

■ Descendent classes supply additional information
so that instantiation is meaningful
■ abstract class is generic concept in class hierarchy
■ class becomes abstract by including the abstract

modifier in class header

51

Abstract Classes
public abstract class GenericVendingMachine
{
 private int numberOfItems;
 private double cashIn;

 public GenericVendingMachine()
 {
 numberOfItems = 0;
 }

 public boolean vendItem()
 {
 boolean result;
 if (numberOfItems > 0)
 {
 numberOfItems--;
 result = true;
 }
 else
 {
 result = false;
 }
 return result;
 }

52

Abstract Classes
 public void loadItems(int n)
 {
 numberOfItems = n;
 }

 public int getNumberOfItems()
 {
 return numberOfItems;
 }

}

53

Abstract Classes
public class CokeMachine3 extends VendingMachine
{
 public CokeMachine3()
 {
 super();
 }

 public CokeMachine3(int n)
 {
 super();
 this.loadItems(n);
 }

 public void buyCoke()
 {
 if (this.vendItem())
 {
 System.out.println("Have a nice frosty Coca-Cola!");
 System.out.println(this.getNumberOfItems() + " cans of Coke remaining");
 }
 else
 {
 System.out.println("Sorry, sold out");
 }
 }

54

Abstract Classes
 public void loadCoke(int n)
 {
 this.loadItems(this.getNumberOfItems() + n);
 System.out.println("Adding " + n +
 " ice cold cans of Coke to this machine");
 }
}

