
1

University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Interfaces, Polymorphism II

Lecture 21, Thu Mar 23 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt and Paul Carter

2

News

■ labs this week
■ midterms returned

■ work through what you got wrong on midterm

■ can earn back up to 5 out of 70 points

■ if you don’t finish during your normal lab, can show
TAs your work next week or at other labs this week

■ Assignment 2 handed back at end of class
■ most, but not all

■ Assignment 3 posted
■ due Friday Apr 7, 5pm

3

Recap: Method Overloading

■ Can have multiple methods of same name

■ Distinguishes between them with signature
■ method name, parameter types and order

■ Cannot have two methods with same
signature

■ Return type is not part of signature

■ Any method can be overloaded
■ constructors are very common case

4

Recap: Interfaces

■ Interface is collection of constants and abstract
methods
■ different meaning than set of public methods that are

documented, as in API

■ to implement interface must provide definitions for all
its methods

■ Abstract methods have no implementation or body
■ method header followed by semicolon

■ specifies how to communicate with method, not what
it does

5

Recap: Interface Example
public interface VendingMachine
{

 public void vendItem();

 public int getItemsRemaining();

 public int getItemsSold();

 public double getCashReceived();

 public void loadItems(int n);

}

public class CokeMachine2005 implements VendingMachine
{

6

Recap: Interface Syntax

■ Use reserved word interface instead of class in
header
■ no need to use reserved word abstract in method

headers, is automatic with interfaces

■ Use reserved word implements followed by
interface name in class header

7

Recap: Polymorphism

■ Polymorphism: behavior varies depending on
actual type of object
■ variables can be declared with interface as

type, can invoke interface methods on them

■ cannot construct interface
■ can only construct objects of some particular

class that implements interface

■ Polymorphism determined at runtime
■ vs. method overloading, determined at

compilation

8

Recap: Polymorphism Example
public class SimCoke2005
{
 public static void main (String[] args)
 {
 VendingMachine foo1 = new CokeMachine2005();
 VendingMachine foo2 = new FrenchFryMachine2005();

 foo1.vendItem();
 foo2.vendItem();
 }
}

Adding another CokeMachine to your empire
Adding another FrenchFryMachine to your empire
Have a Coke
9 cans remaining
Have a nice hot cup of french fries
9 cups of french fries remaining

9

Recap: Bunny Example
public interface Bunnies
{
 public void moveBunny(int direction);

}

public class BigBunny implements Bunnies {

public void moveBunny(int direction) {
 if (direction == 12) {
 y = y + 3;
 carrots = carrots - 2;
 } ...
}

public class LittleBunny implements Bunnies {

public void moveBunny(int direction) {
 if (direction == 12) {
 y = y + 1;
 carrots = carrots - 1;
 } ...
}

10

Polymorphism

■ reference to interface type can reference
instance of any class implementing that
interface
■ static type: type that variable declared to be

■ determines which members of class can be
invoked

■ dynamic type: type that variable actually
references
■ determines which version of method is called

11

Interfaces as Contract

■ Can write code that works on anything that
fulfills contract
■ even classes that don’t exist yet!

■ Example: Comparable
■ useful if you need to sort items
■ compareTo(object)

■ returns -1 if this object less than object o

■ returns 0 if same

■ returns 1 if this object greater than parameter

12

Comparable

■ sort method that works on array of objects of
any type that implements Comparable
■ type guaranteed to have compareTo method

■ we need to sort
■ Bunny
■ Giraffe
■ String
■ ...

13

Selection Sort For Int Primitives
// selection sort
public class SortTest1
{
 public static void main(String[] args)
 {
 int[] numbers = {16,3,19,8,12};
 int min, temp;
 //select location of next sorted value
 for (int i = 0; i < numbers.length-1; i++)
 {
 min = i;
 //find the smallest value in the remainder of
 //the array to be sorted
 for (int j = i+1; j < numbers.length; j++)
 {
 if (numbers[j] < numbers[min])
 {
 min = j;
 }
 }
 //swap two values in the array
 temp = numbers[i];
 numbers[i] = numbers[min];
 numbers[min] = temp;
 }

 System.out.println("Printing sorted result");
 for (int i = 0; i < numbers.length; i++)
 {
 System.out.println(numbers[i]);
 }
 }
}

14

Wrappers

■ Many classes implement Comparable
interface
■ Byte, Character, Double, Float, Integer, Long,

Short, String

■ each implements own version of compareTo

■ Wrapper classes
■ wraps up (encapsulates) primitive type

■ Double: object wrapping primitive double
■ No: sort(double[] myData);

■ Yes: sort(Double[] myData);

15

Multiple Interfaces

■ Classes can implement more than one
interface at once
■ contract to implement all abstract methods

defined in every interface it implements

public class MyClass implements Interface1, Interface2,
Interface3

{
}

