
1

University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Programming Languages

Identifiers, Variables

Lecture 2, Tue Jan 10 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt, Paul Carter

News

� Assignment 0 due
� Labs and tutorials start this week
� Labs

� Lab 0 this week
� Access code after hours:
http://www.cs.ubc.ca/ugrad/facilities/labs/access.shtml

Recap: Me

Tamara Munzner
tmm@cs.ubc.ca
http://www.cs.ubc.ca/~tmm

ICICS X661
office hours Wed 11-12, or by appointment

http://www.ugrad.cs.ubc.ca/~cs111/
http://www.webct.ubc.ca/

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr/

clarifications/corrections/new in green boxes!

Recap: Prereqs

� Prerequisites: Mathematics 12
� or any other UBC mathematics course

� else you will be dropped from this course
� see CS advisors if you need prerequisite

waived for equivalent work.

Recap: Book

� Big Java (second edition) by Cay Horstmann
� same book used for CPSC 211

� if you want to use old edition
� your responsibility to map from old to new
� material on Java 1.5 missing

� read material before class
� weekly question: turn in Thursdays, start of class

Recap: Intro
� what’s computer science
� what’s an algorithm
� what’s happening with hardware

2

Programming Languages

� Objectives
� understand difference between languages

types
� machine vs. assembly vs. high level

� understand difference between languages
translation approaches
� compilers vs. interpreters

Programming Languages
� Objectives

� examine a simple program written in Java
� understand use of comments, white space and

identifiers
� understand difference between a compiler and an

interpreter
� understand how Java programs are compiled and

executed
� understand difference between syntax and

semantics
� understand the difference between syntax errors and

logic errors

Reading This Week

� Ch 1.1 - 1.2: Computer Anatomy
� from last time

� Ch 1.3 – 1.8: Programming Languages
� Ch 2.1-2.2, 2.5: Types/Variables, Assignment,

Numbers
� Ch 4.1-4.2: Numbers, Constants

Programs and Programming Languages

� First programming languages: machine languages
� most primitive kind

� Sample machine language instruction

� What do you suppose it means?

00000000001000100011000000100000

Programs and Programming Languages

� First programming languages: machine languages
� most primitive kind

� Sample machine language instruction

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us

in this in this in this
register register register

Programs and Programming Languages

� First programming languages: machine languages
� most primitive kind

� Sample machine language instruction

� Difficult to write programs this way
� People created languages that were more readable

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us

in this in this in this
register register register

3

Programs and Programming Languages

� Next: assembly languages
� Direct mappings of machine language

instructions into helpful mnemonics,
abbreviations

� Sample assembly language instruction
� Corresponds to machine language instr

add r1,r2,r6

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us

in this in this in this
register register register

Programs and Programming Languages

� Assembly language program converted into
corresponding machine language instructions
by another program called an assembler

add r1,r2,r6

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us

in this in this in this
register register register

assembler
assembly language machine language

Programs and Programming Languages
� Both machine and assembly languages pose big

challenges for programmers
� Difficult to read and write
� Difficult to remember

� Each instruction does very little
� Takes lots of instructions just to get something

simple done

� Every machine or assembly language good for only
one type of computer
� Different to program IBM than Honeywell than

Burroughs...

Programs and Programming Languages
� Next step: development of high-level languages

� You may have heard of some
� Fortran, COBOL, Lisp, BASIC, C, C++, C#, Ada,

Perl, Java, Python

� High-level languages intended to be easier to use
� still a long way from English.

� A single high-level instruction gets more work done
than a machine or assembly language instruction.

� Most high-level languages can be used on different
computers

Programs and Programming Languages

� Example of a high-level instruction
� A = B + C

� Tells computer to
� go to main memory and find value stored in

location called B
� go to main memory and find value stored in

location called C
� add those two values together
� store result in memory in location called A

Programs and Programming Languages

� Program written in high-level language converted to
machine language instructions by another program
called a compiler (well, not always)

� High-level instruction: A = B + C
becomes at least four machine language instructions!

00010000001000000000000000000010 load B
00010000010000000000000000000011 load C
00000000001000100011000000100000 add them
00010100110000000000000000000001 store in A

compiler
high-level language machine language

4

Your High-Level Language Is Java

� Java developed by Sun Microsystems in early 90s

� Intended as computer-independent (or “platform
independent”) programming language for set-top
boxes in cable TV networks
� But Sun decided not to go into set-top box business

� World Wide Web became the next big thing
� Sun saw opportunity, already being heavily into

networked computer systems

Your High-Level Language Is Java

� “Hmmm...
� we have a language that’s been designed to be used

on different computer platforms in big networks
� the World Wide Web is a big network of lots of

different computer platforms
� let’s make Java the programming language of the

Internet!”

� And for some good reasons that we can talk about
later, that’s exactly what happened

Sample Java Application Program

//***
// Oreo.java Author: Kurt Eiselt
//
// Demonstrating simple Java programming concepts while
// revealing one of Kurt's many weaknesses
//***

public class Oreo
{
//***
// demand Oreos
//***
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

Sample Java Application Program

� Comments ignored by Java compiler

//***
// Oreo.java Author: Kurt Eiselt
//
// Demonstrating simple Java programming concepts while
// revealing one of Kurt's many weaknesses
//***

public class Oreo
{
//***
// demand Oreos
//***
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

Sample Java Application Program

/*
Oreo.java Author: Kurt Eiselt

Demonstrating simple Java programming concepts while
revealing one of Kurt's many weaknesses

*/

public class Oreo
{
/* demand Oreos */
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

� Comments could also look like this

Sample Java Application Program

� Comments are important to people
� But not to the compiler

� Compiler only cares about

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

5

Sample Java Application Program

� Whole thing is the definition of a class
� Package of instructions that specify

� what kinds of data will be operated on
� what kinds of operations there will be

� Java programs will have one or more classes
� For now, just worry about one class at a time

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

Sample Java Application Program

� Instructions inside class definition grouped
into one or more procedures called methods
� group of Java statements (instructions) that

has name, performs some task
� All Java programs you create will have main

method where program execution begins

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

Sample Java Application Program

� These class and method definitions are
incomplete at best
� good enough for now
� expand on these definitions as class continues

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

Sample Java Application Program

� Words we use when writing programs are
called identifiers
� except those inside the quotes

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

Sample Java Application Program

� Kurt made up identifier Oreo

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

Sample Java Application Program

� Other programmers chose identifier
System.out.println
� they wrote printing program
� part of huge library of useful programs that

comes with Java

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

6

Sample Java Application Program

� Special identifiers in Java called
reserved words
� don’t use them in other ways

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

Reserved Words

� Get familiar with these
� But you don’t need to memorize all 52 for exam

abstract do if private throw
boolean double implements protected throws
break else import public transient
byte enum instanceof return true
case extends int short try
catch false interface static void
char final long strictfp volatile
class finally native super while
const float new switch
continue for null synchronized
default goto package this

Identifiers

� Identifier must
� Start with a letter and be followed by
� Zero or more letters and/or digits

� Digits are 0 through 9.
� Letters are the 26 characters in English

alphabet
� both uppercase and lowercase
� plus the $ and _
� also alphabetic characters from other languages

Identifiers

� Identifier must
� Start with a letter and be followed by
� Zero or more letters and/or digits

� Digits are 0 through 9.
� Letters are the 26 characters in English

alphabet
� both uppercase and lowercase
� plus the $ and _
� also alphabetic characters from other languages

� Which of the following are not valid identifiers?
userName user_name $cash 2ndName

first name user.age _note_ note2

Identifiers

� Identifier must
� Start with a letter and be followed by
� Zero or more letters and/or digits

� Digits are 0 through 9.
� Letters are the 26 characters in English

alphabet
� both uppercase and lowercase
� plus the $ and _
� also alphabetic characters from other languages

� Which of the following are not valid identifiers?
userName user_name $cash 2ndName

first name user.age _note_ note2

Identifiers

� Java is case sensitive
� Oreo oreo OREO 0reo

� are all different identifiers, so be careful
� common source of errors in programming

7

Identifiers

� Java is case sensitive
� Oreo oreo OREO 0reo

� are all different identifiers, so be careful
� common source of errors in programming

� are these all valid identifiers?

Identifiers

� Creating identifiers in your Java programs
� Remember other people read what you create
� Make identifiers meaningful and descriptive

for both you and them
� No limit to how many characters you can put

in your identifiers
� but don’t get carried away

public class ReallyLongNamesWillDriveYouCrazyIfYouGoOverboard
{
public static void main (String[] args)
{
System.out.println ("Enough already!");

}
}

White Space

//***
// Oreo.java Author: Kurt Eiselt
//
// Demonstrating good use of white space
//***

public class Oreo
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");

}
}

White Space

//***
// Oreo1.java Author: Kurt Eiselt
//
// Demonstrating mediocre use of white space
//***

public class Oreo1
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");
}
}

White Space

//***
// Oreo2.java Author: Kurt Eiselt
//
// Demonstrating bad use of white space
//***

public class Oreo2 { public static void main (String[]
args) { System.out.println ("Feed me more Oreos!"); } }

White Space

//***
// Oreo3.java Author: Kurt Eiselt
//
// Demonstrating totally bizarre use of white space
//***

public
class Oreo3

{
public static

void main (String[] args)
{

System.out.println ("Feed me more Oreos!")
;

}
}

8

White Space

//***
// Oreo4.java Author: Kurt Eiselt
//
// Demonstrating deep psychological issues with whitespace
//***

public
class
Oreo4
{
public
static
void
main
(
String[]
args
)
{
System.out.println
("Feed me more Oreos!")
;
}
}

White Space

� White space
� Blanks between identifiers and other symbols
� Tabs and newline characters are included

� White space does not affect how program runs

� Use white space to format programs we create so
they’re easier for people to understand

Program Development

� Use an editor to create your Java program
� often called source code
� code used interchangeably with program or

instructions in the computer world
� Another program, a compiler or an interpreter,

translates source code into target language or
object code, which is often machine language

� Finally, your computer can execute object code

editing translating executing
insight source object results

code code

Compiling and Running

� Let’s try it!
� command line for now
� later we’ll use Eclipse

� integrated development environment (IDE)

Syntax
� Rules to dictate how statements are constructed.

� Example: open bracket needs matching close bracket
� If program is not syntactically correct, cannot be

translated by compiler
� Different than humans dealing with natural

languages like English. Consider statement with
incorrect syntax (grammar)

for weeks. rained in Vancouver it hasn’t

� we still have pretty good shot at figuring out meaning

Semantics
� What will happen when statement is executed
� Programming languages have well-defined

semantics, no ambiguity
� Different than natural languages like English.

Consider statement:
Mary counted on her computer.

� How could we interpret this?

� Programming languages cannot allow for such
ambiguities or computer would not know which
interpretation to execute

9

Errors

� Computers follows our instructions exactly
� If program produces the wrong result it’s the

programmer’s fault
� unless the user inputs incorrect data
� then cannot expect program to output correct

results: “Garbage in, garbage out” (GIGO)
� Debugging: process of finding and correcting

errors
� Unfortunately can be very time consuming!

Errors

� Error at compile time (during translation)
� you did not follow syntax rules that say how

Java elements must be combined to form
valid Java statements

compile-time error

editing translating executing
insight source object results

code code

Errors

� Error at run time (during execution)
� Source code compiles

� Syntactically (structurally) correct

� But program tried something computers cannot do
� like divide a number by zero.

� Typically program will crash: halt prematurely

compile-time error

editing translating executing
insight source object results

code code

run-time error

Errors

� Logical error
� Source code compiles
� Object code runs
� But program may still produce incorrect results

because logic of your program is incorrect
� Typically hardest problems to find

compile-time error

editing translating executing
insight source object results

code code

run-time error

logical error

Errors

� Let’s try it!
� usually errors happen by mistake, not on

purpose...

Memory and Identifiers
� Example of a high-level instruction

� A = B + C
� Tells computer to

� go to main memory and find value stored in location
called B

� go to main memory and find value stored in location
called C

� add those two values together
� store result in memory in location called A

� Great! But... in reality, locations in memory are not
actually called things like a, b, and c.

10

5802
5803
5804
5805
5806
5807

Data values are
stored in memory
locations – more
than one location
may be used if the
data is large.

10110101

Address*

10110101

*For total accuracy, these addresses should be binary numbers, but you get the idea, no?

Memory Recap
� Memory: series of locations, each having a unique

address, used to store programs and data
� When data is stored in a memory location, previously

stored data is overwritten and destroyed
� Each memory location stores one byte (8 bits) of

data

Memory and Identifiers

� So what’s with the a, b, and c?
� Machine language uses actual addresses for

memory locations
� High-level languages easier

� Avoid having to remember actual addresses
� Invent meaningful identifiers giving names to memory

locations where important information is stored

� pay_rate and hours_worked vs. 5802 and 5806
� Easier to remember and a whole lot less confusing!

Memory and Identifiers: Variables
� Variable: name for location in memory where data is stored

� like variables in algebra class

� pay_rate, hours_worked, a, b, and c are all variables

� Variable names begin with lower case letters
� Java convention, not compiler/syntax requirement

� Variable may be name of single byte in memory or may refer
to a group of contiguous bytes
� More about that next time

Programming With Variables

//***
// Test.java Author: Kurt
//
// Our first use of variables!
//***

public class Test
{

public static void main (String[] args)
{

a = b + c;
System.out.println ("The answer is " + a);

}
}

� Let’s give it a try...

Programming With Variables

//***
// Test.java Author: Kurt
//
// Our first use of variables!
//***

public class Test
{

public static void main (String[] args)
{

a = b + c;
System.out.println ("The answer is " + a);

}
}

� Let’s give it a try...
� b and c cannot be found!
� need to assign values

Programming With Variables: Take 2

//***
// Test2.java Author: Kurt
//
// Our second use of variables!
//***

public class Test2
{

public static void main (String[] args)
{

b = 3;
c = 5;
a = b + c;
System.out.println ("The answer is " + a);

}
}

11

Programming With Variables: Take 2

//***
// Test2.java Author: Kurt
//
// Our second use of variables!
//***

public class Test2
{

public static void main (String[] args)
{

b = 3;
c = 5;
a = b + c;
System.out.println ("The answer is " + a);

}
}

� Now what?
� such a lazy computer, still can’t find symbols...

Now What?

� Java doesn’t know how to interpret the
contents of the memory location
� are they integers? characters from the

keyboard? shades of gray? or....

b
c

00000011
00000101

memory

:

:

Data Types
� Java requires that we tell it what kind of data it is working with

� For every variable, we have to declare a data type

� Java language provides eight primitive data types
� i.e. simple, fundamental

� For more complicated things, can use data types
� created by others provided to us through the Java libraries
� that we invent

� More soon - for now, let’s stay with the primitives

� We want a, b, and c to be integers. Here’s how we do it...

Programming With Variables: Take 3

//***
// Test3.java Author: Kurt
//
// Our third use of variables!
//***

public class Test3
{

public static void main (String[] args)
{

int a; //these
int b; //are
int c; //variable declarations
b = 3;
c = 5;
a = b + c;
System.out.println ("The answer is " + a);

}
}

Primitive Data Types: Numbers

� Six primitives for numbers
� integer vs. floating point
� fixed size, so finite capacity

approx 1.7E308 (15 sig. digits)approx -1.7E308 (15 sig. digits)8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType

Primitive Data Types: Non-numeric

� Character Type
� named char
� Java uses the Unicode character set so each char

occupies 2 bytes of memory.
� Boolean Type

� named boolean
� Variables of type boolean have only two valid values

� true and false

� Often represents whether particular condition is true
� More generally represents any data that has two

states
� yes/no, on/off

12

Primitive Data Types: Numbers

� Primary primitives are int and double
� Just worry about those for now

approx 1.7E308 (15 sig. digits)approx -1.7E308 (15 sig. digits)8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType

Questions?

