
University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Loops

Lecture 12, Tue Feb 21 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

News

■ Welcome back!
■ resume lectures, labs, tutorials, office hours

■ Midterm and Assignment 1 returned
■ pick up after class if you don't have yet

■ midterm solutions posted on WebCT

■ Assignment 2 posted soon
■ probably later today

Reading

■ This week: Chapter 7 all (7.1-7.4)

Recap: Comparing Strings

■ Relational operator == is wrong way to compare

String name1 = "Bubba";
String name2 = "Bubba";
System.out.println(name1 == name2); // prints false

■ equals method is right way to compare Strings

String name1 = "Bubba";
String name2 = "Bubba";

System.out.println(name1.equals(name2)); // prints true

■ why? diagrams will help

Recap: Comparing Strings

■ name1 == name2 : two different references, false

name1

name2

"Bubba"

"Bubba"

■ name1.equals(name2) : contents same, true

Recap: Short-Circuting Evaluation

■ Java evaluates complex expressions left to right
■ short-circuiting: Java stops evaluating once value is

clearly true or false
■ aka lazy evaluation

if ((b > a) && (c == 10))
 System.out.println("when b<=a short-circuit");

if ((b > a) || (c == 10))
 System.out.println("when b>a short-circuit");

■ Corollary: avoid statements with side effects

if ((b > a) || (c++))
 System.out.println("Danger Will Robinson!");

Recap: Conditional Syntax

if (boolean expression) statement
else if (boolean expression) statement

■ optional: zero, one, or many
else statement

■ optional

■ if, else are reserved words
■ parentheses mandatory
■ statement can be

■ single line
■ block of several lines enclosed in { }

Recap: Comparing Floats/Doubles

■ Relational operator for equality not safe for
floating point comparison

if (.3 == 1.0/10.0 + 1.0/10.0 + 1.0/10.0))
System.out.println("Beware roundoff error");

■ Check if difference close to 0 instead

if (Math.abs(f1 - f2) < TOLERANCE)
 System.out.println (“Essentially equal.”);

Recap: Comparing Characters

■ Safe to compare character types with
relational operators

 char c = 'a';
 char d = 'b';
 if (c == d)
 System.out.println("they match");

Recap: Switch Syntax
switch (expression) {
case value:
 statements
 break;

 case value:
 statements
 break;

 default:
 statements

■ switch, case, break are reserved words
■ expression and value must be int or char

■ value cannot be variable
■ break important, or else control flow continues to next set
■ statements can be one line or several lines
■ default executed if no values match expression

Objectives

■ Practice with conditionals

■ Understand basic loops

public class NestTest3 {
 public static void main (String[] args) {
 respondToName("Flocinaucinihilipiliphication");
 respondToName("Supercalifragilisticexpialidocious");
 respondToName("Ambrose");
 respondToName("Kermit");
 respondToName("Miss Piggy!!!");
 respondToName("Spot");
 respondToName("me");
 }
 public static void respondToName(String name) {
 System.out.println("You're named " + name);
 if (name.length() > 20) {
 System.out.println("Gosh, long name");
 System.out.println("Keeping typists busy...");
 } else if (name.length() > 30) {
 System.out.println("Over the top");
 } else if (name.length() < 10) {
 if (name.charAt(0) == 'A')
 System.out.println("You're first");
 else if (name == "Kermit")
 System.out.println("You're a frog");
 System.out.println("I love animals");
 } else if (name.equals("Spot")) {
 System.out.println("You're spotted");
 } else if (name.length() < 3) {
 System.out.println("Concise!");
 }
 }
}

Repetition, Iteration, Loops

■ Computers good at performing same task
many times

■ Loops allow repetitive operations in programs
■ aka iteration statements, repetition statements

■ Loops handy in real life too

Climbing Stairs

■ Am I at the top of the stairs?

Climbing Stairs

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

Climbing Stairs

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

Climbing Stairs

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

Climbing Stairs

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

Climbing Stairs

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ ...and so on...

Washing Hair

■ Lather

Washing Hair

■ Lather

■ Rinse

Washing Hair

■ Lather

■ Rinse

■ Repeat

Washing Hair

■ Lather

■ Rinse

■ Repeat

■ When do you stop??

While Statement

while (boolean expression)

 body

■ Simplest form of loop in Java

■ Body of loop can be
■ single statement

■ whole block of many statements in curly braces

■ Control flow
■ body executed if expression is true

■ then boolean expression evaluated again

■ if expression still true, body executed again

■ repetition continues until expression false

■ then processing continues with next statement after loop

If Versus While Statements

boolean
expression

statement

true

how if
statement
works

false

If Versus While Statements

boolean
expression

statement

true

how if
statement
works

boolean
expression

statement

true false

how while
statement
works

false

If Versus While Statements

■ How can loop boolean change from false to true?

boolean
expression

statement

true

how if
statement
works

boolean
expression

statement

true false

how while
statement
works

false

If Versus While Statements

■ These diagrams called flowcharts

boolean
expression

statement

true

how if
statement
works

boolean
expression

statement

true false

how while
statement
works

false

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ while statement

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ boolean expression

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ while statement body

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ statement after while
■ control flow resumes here when boolean is false

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ trace what happens when execute

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 1

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 1 Is counter <= limit? yes

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 1 Is counter <= limit? yes

"The square of 1 is 1" printed on monitor

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 2

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 2 Is counter <= limit? yes

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 2 Is counter <= limit? yes

"The square of 2 is 4" printed on monitor

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 3

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 3 Is counter <= limit? yes

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 3 Is counter <= limit? yes

"The square of 3 is 9" printed on monitor

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 4

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 4 Is counter <= limit? NO!

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

limit 3 counter 4 Is counter <= limit? NO!

“End of demonstration" printed on monitor

Climbing Stairs Again

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ Am I at the top of the stairs?

■ No.

■ Climb up one step.

■ ...and so on...

Climbing Stairs Again

while (I’m not at the top of the stairs)

{

 Climb up one step

}

■ Climbing stairs is a while
loop!

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter >= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ change termination condition

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter >= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ change termination condition
■ body of loop never executed

Using while Statements

public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter >= counter)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ change termination condition
■ always true

Infinite Loops
public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter >= counter)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 1;
 }
 System.out.println("End of demonstration");
 }
}

■ if termination condition always true, loop never ends
■ infinite loop goes forever

Infinite Loops
public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 3;
 int counter = 1;

 while (counter <= limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter - 1;
 }
 System.out.println("End of demonstration");
 }
}

■ good termination condition

■ but process never gets closer to condition

Infinite Loops
public class WhileDemo
{
 public static void main (String[] args)
 {
 int limit = 9;
 int counter = 0;

 while (counter != limit)
 {
 System.out.println("The square of " + counter +
 " is " + (counter * counter));
 counter = counter + 2;
 }
 System.out.println("End of demonstration");
 }
}

■ process gets closer to termination condition

■ but never satisfies condition, keeps going past it

Another while Example

public class PrintFactorials
{
 public static void main (String[] args)
 {
 int limit = 10;
 int counter = 1;
 int product = 1;

 while (counter <= limit)
 {
 System.out.println("The factorial of " + counter +
 " is " + product’\);
 counter = counter + 1;
 product = product * counter;
 }
 System.out.println("End of demonstration");
 }
}

■ accumulate product

Questions?

