
University of British Columbia

CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Static Methods, Conditionals

Lecture 10, Tue Feb 7 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

Reading

! This week: Chapter 6 all (6.1-6.4)

News

! Midterm tonight: Tue Feb 7, 18:30 - 20:00

! Geography 100 & 200

! Seating by last name

! A-Kim in 200

! Kirtz-Z in 100

! Id card face up on desk

! Every other seat, sit where exam is laid out

! Closed book/notes/calculator

! Reminder: no labs or tutorials this week

Recap: Formal vs. Actual Parameters

! Formal parameter: in declaration of class
public class Point { //...

 public void setPosition(int x, int y) {

 xCoord = x; yCoord = y;

}

}

! Actual parameter: passed in when method is called

public class PointTest {

public static void main(String [] args) {

 //...

 tester.setPosition(3,4);

Recap: Scope

! Variable scope: block of code it's declared in

! block of code is defined by braces { }

! Class scope: accessible to any class member

! fields accessed by all class methods

! Local scope: method parameters and

variables declared within method body

Recap: Shorthand Operators

! Java shorthand
! count++; // same as count = count + 1;

! count--; // same as count = count - 1;

! note no whitespace between variable name

and operator

! Similar shorthand for assignment
! tigers += 5; // like tigers=tigers+5;

! lions -= 3; // like lions=lions-3;

! bunnies *= 2; // like bunnies=bunnies*2;

! dinos /= 100; // like dinos=dinos/100;

Recap: Data Conversion

! Math in Java: it depends!

 int a = 1 / 3; // a is 0

 double b = 1 / 3; // b is 0.0

 int c = 1.0 / 3.0; // Java’s not happy

 double d = 1.0 / 3.0; // d is 0.333333333

Recap: Data Conversion

! Casting: explicit data conversion

! Widening: conversion from one data type to another
type with equal or greater amount of space to store
value

! widening conversions safer because don’t lose
information (except for roundoff)

! Java will do widening conversions automatically

! Narrowing: conversion from one type to another
type with less space to store value

! important information may be lost

! Java will not do narrowing conversions automatically

Recap: Automatic Conversion

! Done implicitly if widening

! Assignment conversion: converted because value
of one type assigned to variable of other type

 double b = 1 / 3;

! Promotion: converted because expression contains
mixed types

 int hours_worked = 40;

 double pay_rate = 5.25;

 double total_pay = hours_worked * pay_rate;

Recap: Static Variables

! Static variable shared among all instances of
class

! "belongs" to class, not instances

! only one copy of static variable for all objects
of class

! thus changing value of static variable in one
object changes it for all others objects too!

! Memory space for a static variable
established first time containing class is
referenced in program

Recap: Static Methods

! Static method "belongs" to the class itself

! not to objects that are instances of class

! aka class method

! Do not have to instantiate object of class in

order to invoke static method of that class

! Can use class name instead of object name

to invoke static method

Recap: Static Example

public class Giraffe {

private static int numGiraffes;

private double neckLength;

public Giraffe(double neckLength) {

this.neckLength = neckLength;

 numGiraffes++;

 }

public void sayHowTall() {

 System.out.println("Neck is " + neckLength);

 }

public static int getGiraffeCount() {

 return numGiraffes;

 }

}

Static Example

public class Giraffe {

private static int numGiraffes;

private double neckLength;

public Giraffe(double neckLength) {

this.neckLength = neckLength;

 numGiraffes++;

 }

public void sayHowTall() {

 System.out.println("Neck is " + neckLength);

 }

public return numGiraffes;

 }static int getGiraffeCount() {

}

! using this implicit parameter to disambiguate scope

Calling Static Method Example

public class UseGiraffes

{

 public static void main (String[] args)

 {

 System.out.println("Total Giraffes: " +
Giraffe.getGiraffeCount());

 Giraffe fred = new Giraffe(200);

 Giraffe bobby = new Giraffe(220);

 Giraffe ethel = new Giraffe(190);

 Giraffe hortense = new Giraffe(250);

 System.out.println("Total Giraffes: " +
Giraffe.getGiraffeCount());

 }

}

! Note that Giraffe is class name, not object name!
! at first line haven’t created any Giraffe objects yet

Static Methods

! Static methods do not operate in context of
particular object

! cannot reference instance variables because they
exist only in an instance of a class

! compiler will give error if static method attempts to
use nonstatic variable

! Static method can reference static variables

! because static variables exist independent of specific
objects

Static Methods

public class UseGiraffes

{

 public static void main (String[] args)

 {

 System.out.println("Total Giraffes: " +
Giraffe.getGiraffeCount());

 Giraffe fred = new Giraffe(200);

 Giraffe bobby = new Giraffe(220);

 Giraffe ethel = new Giraffe(190);

 Giraffe hortense = new Giraffe(250);

 System.out.println("Total Giraffes: " +
Giraffe.getGiraffeCount());

 }

}

! Now you know what all these words mean
! main method can access only static or local variables

Static Methods in java.Math

! Java provides you with many pre-existing static methods
! Package java.lang.Math is part of basic Java environment

! you can use static methods provided by Math class

! examples:

> Math.sqrt(36)
6.0
> Math.sin(90)
0.8939966636005579
> Math.sin(Math.toRadians(90))
1.0
> Math.max(54,70)
70
> Math.round(3.14159)
3

> Math.random()
0.7843919693319797
> Math.random()
0.4253202368928023
> Math.pow(2,3)
8.0
> Math.pow(3,2)
9.0
> Math.log(1000)
6.907755278982137
> Math.log10(1000)
3.0

Objectives

! Understand how static methods work

! Understand how to use conditionals

! Understand how boolean operators work

Conditional Statement

! Boolean expression: test that returns true or
false

! Conditional statement: choose which
statement will be executed next based on
boolean expression

! Example

if (age < 20)
 System.out.println("Really, you look like you are "
 + (age + 5) + ".");

Conditional Example

import java.util.Scanner;

public class Feelgood
{
 public static void main (String[] args)
 {
 int age;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter your age: ");
 age = scan.nextInt();
 if (age < 20)
 System.out.println("Really, you look like you "
 + "are " + (age + 5) + ".");
 System.out.println ("You don't look a day over "
 + (age - 10) + "!");
 }
}

Conditional Example

import java.util.Scanner;

public class Feelgood
{
 public static void main (String[] args)
 {
 int age;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter your age: ");
 age = scan.nextInt();
 if (age < 20)
 System.out.println("Really, you look like you "
 + "are " + (age + 5) + ".");
 if (age >= 20)
 System.out.println ("You don't look a day over "
 + (age - 10) + "!");
 }
}

Conditional Example

import java.util.Scanner;

public class Feelgood
{
 public static void main (String[] args)
 {
 int age;
 Scanner scan = new Scanner (System.in);
 System.out.println ("Enter your age: ");
 age = scan.nextInt();
 if (age < 20)
 System.out.println("Really, you look like you "
 + "are " + (age + 5) + ".");
 else
 System.out.println ("You don't look a day over "
 + (age - 10) + "!");
 }
}

Conditional In Depth

! Within method, statements usually executed top to
bottom

! one after the other

! Change control flow with conditional statement

if (age < 20)
 System.out.println("Really, you look like you are "
 + (age + 5) + ".");

! Choice hinges on evaluation of boolean operator

Boolean Expressions

! Boolean expression: test which returns either true
or false when evaluated

! aka conditional

! Consists of operands and operators, like arithmetic
expression

! but operators only return true or false when applied
to operands

! Two different kinds of operators

! relational

! sometime split into relational and equality

! logical

Relational Operators

! Tests two values (operands)

! Operators

! == equal

! returns true if they are equal, false otherwise

! note: do not confuse this with =

! != not equal

! returns true if they are not equal, false otherwise

! < less than

! <= less than or equal to

! > greater than

! >= greater than or equal to

Equality Example

int a = 3;
int b = 6;
int c = 10;

if (a == b)
 System.out.println(“these two values are equal”);

if ((b - a) == a)
 System.out.println(“b is the same as a”);

if (a != b)
 System.out.println(“nope!”);

! Note we can use arithmetic operator inside boolean
expression

Logical Operators

! Way to combine results from relational operators into single

test

! AND, OR, and NOT

! in terms from math or philosophy class

! Operators

! && logical AND

! || logical OR

! ! logical NOT

Logical AND

! Logical AND of values a and b evaluates to

! true if both a and b are true

! false otherwise

a b a && b

false false false
false true false
true false false
true true true

Logical OR

! Logical OR of values a and b evaluates to

! true if either a or b are true

! true if both are true

! false otherwise

a b a || b

false false false
false true true
true false true
true true true

Logical NOT

! Logical NOT of value a evaluates to

! true if a is false

! false if a is true

a ! a

false true
true false

int a = 3;
int b = 6;
int c = 10;

if ((b > a) && (c == 10))
 System.out.println(“this should print”);

if (!(b > a))
 System.out.println(“this should not print”);

if !(b > a)
 System.out.println(“what happened?”);

Logical Operator Examples Logical Operator Examples

! is (!(b > a)) the same as

! (a > b)

! (a >= b)

! (b < a)

Questions?

