Ch 7: Arrange Tables

Tamara Munzner

Department of Computer Science

University of British Columbia

CPSC 547, Information Visualization

Day 8: 26 January 2017

http://www.cs.ubc.ca/~tmm/courses/547-17

VAD Ch 7: Arrange Tables

Encode

Arrange

→ Express

→ Separate

→ Order

→ Align

→ Use

Arrange tables

Express Values

- Separate, Order, Align Regions
 - → Separate

→ Order

→ Align

- **Axis Orientation**
 - → Rectilinear

→ Parallel

→ Radial

- **Layout Density**
 - → Dense

→ Space-Filling

→ 1 Key List

→ 2 Keys Matrix

→ 3 Keys Volume

→ Many Keys Recursive Subdivision

Keys and values

- key
 - -independent attribute
 - -used as unique index to look up items
 - -simple tables: I key
 - -multidimensional tables: multiple keys
- value
 - -dependent attribute, value of cell
- classify arrangements by key count
 - -0, 1, 2, many...

→ 2 Keys Matrix

→ 3 Keys Volume

→ Tables

→ Multidimensional Table

→ Many Keys Recursive Subdivision

Idiom: scatterplot

- express values
 - -quantitative attributes
- no keys, only values
 - -data
 - 2 quant attribs
 - -mark: points
 - -channels
 - horiz + vert position
 - -tasks

Express Values

- find trends, outliers, distribution, correlation, clusters
- -scalability
 - hundreds of items

Some keys: Categorical regions

- → Separate

→ Order

→ Align

- regions: contiguous bounded areas distinct from each other
 - -using space to separate (proximity)
 - -following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

→ 2 Keys

Matrix

→ 3 Keys Volume

→ Many Keys

Recursive Subdivision

Idiom: bar chart

- one key, one value
 - -data
- ne key, one value

 data

 I categ attrib, I quant attrib
 - -mark: lines
 - -channels
 - length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - by label (alphabetical), by length attrib (data-driven)
 - -task
 - compare, lookup values
 - -scalability
 - dozens to hundreds of levels for key attrib

Idiom: stacked bar chart

- one more key
 - -data
 - 2 categ attrib, I quant attrib
 - -mark: vertical stack of line marks
 - glyph: composite object, internal structure from multiple marks
 - -channels
 - length and color hue
 - spatial regions: one per glyph
 - aligned: full glyph, lowest bar component
 - unaligned: other bar components
 - -task
 - part-to-whole relationship
 - -scalability
 - several to one dozen levels for stacked attrib

[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 2001.]

ldiom: streamgraph

- generalized stacked graph
 - -emphasizing horizontal continuity
 - vs vertical items
 - -data
 - I categ key attrib (artist)
 - I ordered key attrib (time)
 - I quant value attrib (counts)
 - -derived data
 - geometry: layers, where height encodes counts
 - I quant attrib (layer ordering)
 - -scalability
 - hundreds of time keys
 - dozens to hundreds of artist keys
 - more than stacked bars, since most layers don't extend across whole chart

[Stacked Graphs Geometry & Aesthetics. Byron and Wattenberg. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6): 1245–1252, (2008).]

Idiom: line chart

- one key, one value
 - -data
 - 2 quant attribs
 - -mark: points
 - line connection marks between them
 - -channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
 - -task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib
 - -bar charts if categorical
 - -line charts if ordered
- do not use line charts for categorical key attribs
 - -violates expressivenessprinciple
 - implication of trend so strong that it overrides semantics!
 - "The more male a person is, the taller he/she is"

after [Bars and Lines: A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27:6 (1999), 1073–1079.]

Idiom: heatmap

- two keys, one value
 - -data
 - 2 categ attribs (gene, experimental condition)
 - I quant attrib (expression levels)
 - -marks: area
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - -channels
 - color by quant attrib
 - (ordered diverging colormap)
 - -task
 - find clusters, outliers
 - -scalability
 - IM items, 100s of categ levels, ~10 quant attrib levels

ldiom: cluster heatmap

- in addition
 - -derived data
 - 2 cluster hierarchies
 - -dendrogram
 - parent-child relationships in tree with connection line marks
 - leaves aligned so interior branch heights easy to compare
 - -heatmap
 - marks (re-)ordered by cluster hierarchy traversal

Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
 - -rectilinear axes, point mark
 - -all possible pairs of axes
 - -scalability
 - one dozen attribs
 - dozens to hundreds of items
- parallel coordinates
 - -parallel axes, jagged line representing item
 - -rectilinear axes, item as point
 - axis ordering is major challenge
 - -scalability
 - dozens of attribs
 - hundreds of items

Table

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Task: Correlation

- scatterplot matrix
 - -positive correlation
 - diagonal low-to-high
 - -negative correlation
 - diagonal high-to-low
 - -uncorrelated
- parallel coordinates
 - -positive correlation
 - parallel line segments
 - -negative correlation
 - all segments cross at halfway point
 - -uncorrelated
 - scattered crossings

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating Correlations of $\rho=1,.8,.2,0,-.2,-.8$, and -1.

ldioms: radial bar chart, star plot

- radial bar chart
 - -radial axes meet at central ring, line mark
- star plot
 - -radial axes, meet at central point, line mark
- bar chart
 - -rectilinear axes, aligned vertically
- accuracy
 - -length unaligned with radial
 - less accurate than aligned with rectilinear

ldioms: pie chart, polar area chart

- pie chart
 - -area marks with angle channel
 - -accuracy: angle/area much less accurate than line length
- polar area chart
 - -area marks with length channel
 - -more direct analog to bar charts
- data
 - I categ key attrib, I quant value attrib
- task
 - -part-to-whole judgements

Idioms: normalized stacked bar chart

- task
 - -part-to-whole judgements
- normalized stacked bar chart
 - -stacked bar chart, normalized to full vert height
 - -single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle
- pie chart
 - -information density: requires large circle

ldiom: glyphmaps

 rectilinear good for linear vs nonlinear trends

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models. Wickham, Hofmann, Wickham, and Cook. Environmetrics 23:5 (2012), 382–393.]

Orientation limitations

- rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - more in afternoon
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - -angles lower precision than lengths
 - -asymmetry between angle and length
 - can be exploited!

[Uncovering Strengths and Weaknesses of Radial Visualizations - an Empirical Approach. Diehl, Beck and Burch. IEEE TVCG (Proc. InfoVis) 16(6):935–942, 2010.]

→ Rectilinear

→ Parallel

→ Radial

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - -Chap 7: Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, 1993.

Paper: D3

- paper types
 - -design studies
 - -technique/algorithm
 - -evaluation
 - -model/taxonomy
 - -system

[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.]

Toolkits

- imperative: how
 - -low-level rendering: Processing, OpenGL
 - -parametrized visual objects: prefuse
 - also flare: prefuse for Flash
- declarative: what
 - -Protoviz, D3, ggplot2
 - -separation of specification from execution
- considerations
 - -expressiveness
 - can I build it?
 - –efficiency
 - how long will it take?
 - -accessibility
 - do I know how?

WebGL/OpenGL

- graphics library
 - -pros
 - power and flexibility, complete control for graphics
 - hardware acceleration
 - many language bindings: C, C++, Java (w/ JOGL)
 - -cons
 - big learning curve if you don't know already
 - no vis support, must roll your own everything
 - -example app: TreeJuxtaposer (OpenGL)

[Fig 5. Munzner et al.TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Proc SIGGRAPH 2003, pp 453-462.]

Processing

- layer on top of Java/OpenGL
- visualization esp. for artists/designers
- pros
 - -great sandbox for rapid prototyping
 - -huge user community, great documentation
- cons
 - -poor widget library support
- example app: MizBee

prefuse

- infovis toolkit, in Java
- fine-grained building blocks for tailored visualizations
- pros
 - -heavily used (previously)
 - -very powerful abstractions
 - -quickly implement most techniques covered so far
- cons
 - -no longer active
 - -nontrivial learning curve
- example app: DOITrees Revisited

[DOITrees Revisited: Scalable, Space-Constrained Visualization of Hierarchical Data. Heer and Card. Proc. Advanced Visual Interfaces (AVI), pp. 421–424, 2004.]

prefuse

- separation: abstract data, visual form, view
 - -data: tables, networks
 - -visual form: layout, color, size, ...
 - -view: multiple renderers

[Fig 2. Heer, Card, and Landay. Prefuse: A Toolkit for Interactive Information Visualization. Proc. CHI 2005, 421-430]

InfoVis Reference Model

- conceptual model underneath design of prefuse and many other toolkits
- heavily influenced much of infovis (including nested model)
 - -aka infovis pipeline, data state model

[Redrawn Fig 1.23. Card, Mackinlay, and Shneiderman. Readings in Information Visualization: Using Vision To Think, Chapter 1. Morgan Kaufmann, 1999.]

Declarative toolkits

- imperative tools/libraries
 - -say exactly how to do it
 - -familiar programming model
 - OpenGL, prefuse, ...
- declarative: other possibility
 - -just say what to do
 - -Protovis, D3

Protovis

- declarative infovis toolkit, in Javascript
 - -also later Java version
- marks with inherited properties
- pros
 - -runs in browser
 - -matches mark/channel mental model
 - -also much more: interaction, geospatial, trees,...
- cons
 - -not all kinds of operations supported
- example app: NapkinVis (2009 course project)

Protovis Validation

- wide set of old/new app examples
 - -expressiveness, effectiveness, scalability
 - -accessibility
- analysis with cognitive dimensions of notation
 - -closeness of mapping, hidden dependencies
 - -role-expressiveness visibility, consistency
 - -viscosity, diffuseness, abstraction
 - -hard mental operations

[Cognitive dimensions of notations. Green (1989). In A. Sutcliffe and

L. Macaulay (Eds.) People and Computers V. Cambridge, UK: Cambridge University Press, pp 443-460.]

D3

- declarative infovis toolkit, in Javascript
- Protovis meets Document Object Model
- pros
 - -seamless interoperability with Web
 - -explicit transforms of scene with dependency info
 - -massive user community, many thirdparty apps/libraries on top of it, lots of docs
- cons
 - -even more different from traditional programming model
- example apps: many

D3

- objectives
 - -compatibility
 - -debugging
 - -performance
- related work typology
 - –document transformers
 - -graphics libraries
 - -infovis systems
 - general note: all related work sections are a mini-taxonomy!

[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.]

D3 capabilities

- query-driven selection
 - -selection: filtered set of elements queries from the current doc
 - also partitioning/grouping!
 - -operators act on selections to modify content
 - instantaneous or via animated transitions with attribute/style interpolators
 - event handlers for interaction
- data binding to scenegraph elements
 - -data joins bind input data to elements
 - -enter, update, exit subselections
 - -sticky: available for subsequent re-selection
 - -sort, filter

[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.]

D3 Features

- document transformation as atomic operation
 - -scene changes vs representation of scenes themselves
- immediate property evaluation semantics
 - -avoid confusing consequences of delayed evaluation
- validation
 - -performance benchmarks
 - page loads, frame rate
 - -accessibility
 - everybody has voted with their feet by now!

Next Time

- to read
 - -VAD Ch. 8: Arrange Spatial Data
 - -Radial Sets: Interactive Visual Analysis of Large Overlapping Sets.

 Bilal Alsallakh, Wolfgang Aigner, Silvia Miksch, and Helwig Hauser.

 IEEE Transactions on Visualization and Computer Graphics (Proc InfoVis 2013), 19(12):2496-2505, 2013.
 - paper type: technique