Ch 7: Arrange Tables

Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547, Information Visualization
Day 8: 26 January 2017
http://www.cs.ubc.ca/~tmm/courses/547-I7

VAD Ch 7:Arrange Tables

Encode

Arrange tables

Θ Express Values

Θ Separate, Order, Align Regions
\rightarrow Separate
\rightarrow Order

\rightarrow Align

$$
\rightarrow 1 \text { Key }
$$

List
\square

$\rightarrow 2$ Keys Matrix
 \#

$\rightarrow 3$ Keys
Volume

N
Θ Axis Orientation
\rightarrow Rectilinear

\rightarrow Parallel

\rightarrow Radial

Θ Layout Density
\rightarrow Dense $\quad \rightarrow$ Space-Filling

\rightarrow Many Keys Recursive Subdivision

Keys and values

\rightarrow Tables

- key
-independent attribute
-used as unique index to look up items
Attributes (columns)

\rightarrow Multidimensional Table

-0, I, 2, many...Express Values $\rightarrow 1$ Key
$\rightarrow 2$ Keys
$\rightarrow 3$ Keys
Volume
\rightarrow Many Keys Recursive Subdivision

Idiom: scatterplot

Θ Express Values

- express values
-quantitative attributes

- no keys, only values -data
- 2 quant attribs
-mark: points
-channels
- horiz + vert position -tasks

- find trends, outliers, distribution, correlation, clusters
-scalability
- hundreds of items

Some keys: Categorical regions
\rightarrow Separate

\rightarrow Order

\rightarrow Align

- regions: contiguous bounded areas distinct from each other
-using space to separate (proximity)
-following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Idiom: bar chart

- one key, one value -data
- I categ attrib, I quant attrib ${ }^{\text {² }}$ -mark: lines
-channels

- length to express quant value
- spatial regions: one per mark
- separated horizontally, aligned vertically
- ordered by quant attrib
» by label (alphabetical), by length attrib (data-driven)
-task
- compare, lookup values

-scalability

- dozens to hundreds of levels for key attrib

Idiom: stacked bar chart

- one more key
-data
- 2 categ attrib, I quant attrib -mark: vertical stack of line marks

- glyph: composite object, internal structure from multiple marks -channels
- length and color hue
- spatial regions: one per glyph
- aligned: full glyph, lowest bar component
- unaligned: other bar components
-task
- part-to-whole relationship
-scalability
- several to one dozen levels for stacked attrib
[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 200 I.]

Idiom: streamgraph

- generalized stacked graph
-emphasizing horizontal continuit
- vs vertical items
-data
- I categ key attrib (artist)
[Stacked Graphs Geometry \& Aesthetics. Byron and Wattenberg. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) I4(6): I 245-I 252, (2008).]
- I ordered key attrib (time)
- I quant value attrib (counts)
-derived data
- geometry: layers, where height encodes counts
- I quant attrib (layer ordering)
-scalability
- hundreds of time keys
- dozens to hundreds of artist keys
- more than stacked bars, since most layers don't extend across whole chart

Idiom: line chart

- one key, one value
-data
- 2 quant attribs
-mark: points
- line connection marks between them -channels

- aligned lengths to express quant value

Year

- separated and ordered by key attrib into horizontal regions
-task
- find trend
- connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib
-bar charts if categorical
-line charts if ordered
- do not use line charts for categorical key attribs
-violates expressiveness principle
- implication of trend so strong that it overrides semantics!
- "The more male a person is, the taller he/she is"

Idiom: heatmap

- two keys, one value
-data
- 2 categ attribs (gene, experimental condition)
- I quant attrib (expression levels)
-marks: area
- separate and align in 2D matrix
- indexed by 2 categorical attributes
-channels
- color by quant attrib
- (ordered diverging colormap)
-task

```
-> 1 Key
    List
```


- find clusters, outliers
-scalability
- IM items, I00s of categ levels, ~ 10 quant attrib levels

Idiom: cluster heatmap

- in addition
- derived data
- 2 cluster hierarchies
-dendrogram
- parent-child relationships in tree with connection line marks
- leaves aligned so interior branch heights easy to compare
 -heatmap
- marks (re-)ordered by cluster hierarchy traversal
Θ Axis Orientation

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
-rectilinear axes, point mark
-all possible pairs of axes
-scalability
- one dozen attribs
- dozens to hundreds of items
- parallel coordinates

Scatterplot Matrix

-parallel axes, jagged line representing item
-rectilinear axes, item as point

- axis ordering is major challenge
-scalability
- dozens of attribs

85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Table

- hundreds of items

Task: Correlation

- scatterplot matrix
-positive correlation
- diagonal low-to-high -negative correlation
- diagonal high-to-low -uncorrelated
- parallel coordinates
-positive correlation
- parallel line segments -negative correlation
- all segments cross at halfway point -uncorrelated
- scattered crossings
[Hyperdimensional Data Analysis Using Parallel Coordinates. Wegman. Journ. American Statistical Association 85:4 I I (1990), 664-675.]

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:I (20I0), 3-28.]

Idioms: radial bar chart, star plot

- radial bar chart
-radial axes meet at central ring, line mark
- star plot
-radial axes, meet at central point, line mark
- bar chart
-rectilinear axes, aligned vertically
- accuracy
-length unaligned with radial
- less accurate than aligned with rectilinear

Idioms: pie chart, polar area chart

- pie chart
-area marks with angle channel
-accuracy: angle/area much less accurate than line length

- polar area chart
-area marks with length channel
-more direct analog to bar charts

- data
- I categ key attrib, I quant value attrib
- task

-part-to-whole judgements

Idioms: normalized stacked bar chart

- task
-part-to-whole judgements
- normalized stacked bar chart
-stacked bar chart, normalized to full vert height -single stacked bar equivalent to full pie
- high information density: requires narrow rectangle
- pie chart
-information density: requires large circle

Idiom: glyphmaps

- rectilinear good for linear vs nonlinear trends

- radial good for cyclic patterns

Orientation limitations

- rectilinear: scalability wrt \#axes
- 2 axes best
- 3 problematic
-more in afternoon
- 4+ impossible

Θ Axis Orientation

\rightarrow Rectilinear

\rightarrow Parallel

\rightarrow Radial

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
-Chap 7:Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, 1993.

Paper:D3

- paper types
-design studies
-technique/algorithm
-evaluation
-model/taxonomy
-system
[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans.Visualization \& Comp. Graphics (Proc. InfoVis), 201 I.]

Toolkits

- imperative: how
-low-level rendering: Processing, OpenGL
-parametrized visual objects: prefuse
- also flare: prefuse for Flash
- declarative: what
-Protoviz, D3, ggplot2
-separation of specification from execution
- considerations
-expressiveness
- can I build it?
-efficiency
- how long will it take?
-accessibility
- do I know how?

WebGL/OpenGL

- graphics library
-pros
- power and flexibility, complete control for graphics
- hardware acceleration
- many language bindings: C, C++, Java (w/ JOGL) -cons
- big learning curve if you don't know already
- no vis support, must roll your own everything -example app:TreeJuxtaposer (OpenGL)

[Fig 5. Munzner et al.TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Proc SIGGRAPH 2003, pp 453-462.]

Processing

- layer on top of Java/OpenGL
- visualization esp. for artists/designers
- pros
-great sandbox for rapid prototyping
-huge user community, great documentatiol
- cons
- poor widget library support
- example app: MizBee

prefuse

- infovis toolkit, in Java
- fine-grained building blocks for tailored visualizations
- pros
-heavily used (previously)
-very powerful abstractions
-quickly implement most techniques covered so far
- Cons
-no longer active
-nontrivial learning curve
- example app: DOlTrees Revisited

[DOITrees Revisited: Scalable, Space-Constrained Visualization of Hierarchical Data. Heer and Card. Proc. Advanced Visual Interfaces (AVI), pp. 42 I-424, 2004.]

prefuse

- separation: abstract data, visual form, view
-data: tables, networks
-visual form: layout, color, size, ...
-view: multiple renderers

[Fig 2. Heer, Card, and Landay. Prefuse:A Toolkit for Interactive Information Visualization. Proc. CHI 2005, 42 I-430]

InfoVis Reference Model

- conceptual model underneath design of prefuse and many other toolkits
- heavily influenced much of infovis (including nested model)
-aka infovis pipeline, data state model

Data
 Visual Form
 Task

[Redrawn Fig I.23. Card, Mackinlay, and Shneiderman. Readings in Information Visualization: Using Vision To Think, Chapter I. Morgan Kaufmann, 1999.]

Declarative toolkits

- imperative tools/libraries
-say exactly how to do it
-familiar programming model
- OpenGL, prefuse, ...
- declarative: other possibility
-just say what to do
-Protovis, D3

Protovis

- declarative infovis toolkit, in Javascript -also later Java version
- marks with inherited properties
- pros
-runs in browser
-matches mark/channel mental model -also much more: interaction, geospatial, trees,...
- cons
-not all kinds of operations supported
- example app: NapkinVis (2009 course project)

[Fig I, 3. Chao. NapkinVis. http://www.cs.ubc.ca/~tmm/courses/533-09/projects.htm/\#will]

Protovis Validation

- wide set of old/new app examples
-expressiveness, effectiveness, scalability
-accessibility
- analysis with cognitive dimensions of notation
-closeness of mapping, hidden dependencies
-role-expressiveness visibility, consistency
-viscosity, diffuseness, abstraction
-hard mental operations
[Cognitive dimensions of notations. Green (I989). In A. Sutcliffe and
L. Macaulay (Eds.) People and Computers V. Cambridge, UK: Cambridge University Press, pp 443-460.]
- declarative infovis toolkit, in Javascript
- Protovis meets Document Object Model
- pros
-seamless interoperability with Web
-explicit transforms of scene with dependency info
-massive user community, many thirdparty apps/libraries on top of it, lots of docs
- Cons
-even more different from traditional programming model
- example apps: many

D3

- objectives
-compatibility
-debugging
-performance
- related work typology
-document transformers
-graphics libraries
-infovis systems
- general note: all related work sections are a mini-taxonomy!
[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans.Visualization \& Comp. Graphics (Proc. InfoVis), 20 II.]

D3 capabilities

- query-driven selection
-selection: filtered set of elements queries from the current doc
- also partitioning/grouping!
-operators act on selections to modify content
- instantaneous or via animated transitions with attribute/style interpolators
- event handlers for interaction
- data binding to scenegraph elements -data joins bind input data to elements
-enter, update, exit subselections
-sticky: available for subsequent re-selection
 -sort, filter

D3 Features

- document transformation as atomic operation
-scene changes vs representation of scenes themselves
- immediate property evaluation semantics
-avoid confusing consequences of delayed evaluation
- validation
-performance benchmarks
- page loads, frame rate
-accessibility
- everybody has voted with their feet by now!

Next Time

- to read
-VAD Ch. 8:Arrange Spatial Data
- Radial Sets: Interactive Visual Analysis of Large Overlapping Sets. Bilal Alsallakh,Wolfgang Aigner, Silvia Miksch, and Helwig Hauser. IEEE Transactions on Visualization and Computer Graphics (Proc InfoVis 2013), 19(12):2496-2505, 2013.
- paper type: technique

