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High dimensional data

Most real world datasets are high dimensional.

High dimensional data vis is hard.

Dimensionality reduction to the rescue.
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tSNE
Introduction

A tool for dimensionality reduction/vis of high dimensional data.

Converts similarities between data points in high dimensional space to
joint probability distribution P.

Computes a joint probability distribution Q, describing similarity in
low dimensional space.

Goal: Represent P faithfully using Q.
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tSNE
Introduction

Minimize Kullback-Leibler divergence between P and Q.

Use gradient descent for minimization.

Each point attracts or repels all other points with a force F .
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Barnes-Hut SNE

Original tSNE uses brute force approach for F .

Computation and memory complexity of O(n2).

Barnes-Hut SNE is an evolution of tSNE.
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Barnes-Hut SNE

Uses two approximations.

Approximation 1: Similarities between data points are computed by
only taking set of nearest neighbours N.

Approximation 2: Uses Barnes-Hut algorithm.

Reduces computational and memory complexity to O(N log(N))) and
O(N) respectively.
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A-tSNE
Introduction

Evolution of BH-SNE.

Uses approximations to generate useful intermediate results.

Approximation defined by user.
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A-tSNE
Introduction

Figure: Progressive visual analytics using tSNE

Figure: Progressive visual analytics using A-tSNE
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A-tSNE
Introduction

Improves BH-SNE using approximated KNN computations for
approximated P.

Using a precision parameter ρ, describe the average percentage of
points in approximated neighbourhood that belong to the exact
neighbourhood.

ρ is user defined, large values of ρ means better approximations but
more computational overhead.

These approximations make A-tSNE computationally steerable.
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A-tSNE
Introduction

Figure: BH-SNE: 3191.8 s

Figure: A-tSNE (ρ = 0.34): 30.1 s

Figure: A-tSNE (ρ = 0.23): 20.4 s

Figure: A-tSNE (ρ = 0.07): 13.0 s
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A-tSNE
User driven refinement

User selection: Select a subset of points for immediate refinement.

Breadth first search: If only a few points are selected, include the
neighbourhoods.

Density based refinement: Global overview, user defined selection or
whole dataset.
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A-tSNE
Visualization and interaction

Density based: Simple points increase clutter, use KDE.

Visualizing approximations: Precision of high dimensional similarities
is gradually refined until exact, requested precision can be visualized
while refinement is ongoing.

Use magic lens to show approximations
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A-tSNE
Data manipulation

Inserting points

Deleting points

Dimensionality modification
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A-tSNE
Interface

Figure: Interface
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A-tSNE
Mouse brain gene expression

Figure: Analysis of the gene expression in the mouse brain using A-tSNE
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A-tSNE
Real-time analysis of high-dimensional streams

Figure: Initial embedding

Figure: New cluster indicates the
creation of a set of different readings

Figure: Evolution of (a)

Figure: The cluster that identifies
miscalibrated readings is removed
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Critique

Enhanced performance.

User selective refinement.

Too many moving parts.

Not sure if all are helpful.
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For Further Reading I

Pezotti et al. 2016
Approximated and user steerable tsne for progressive visual analytics.
IEEE Transactions on Visualization and Computer Graphics, 2016.
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