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High dimensional data

@ Most real world datasets are high dimensional.
@ High dimensional data vis is hard.

@ Dimensionality reduction to the rescue.
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tSNE

Introduction

@ A tool for dimensionality reduction/vis of high dimensional data.

@ Converts similarities between data points in high dimensional space to
joint probability distribution P.

e Computes a joint probability distribution Q, describing similarity in
low dimensional space.

@ Goal: Represent P faithfully using Q.
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tSNE

Introduction

@ Minimize Kullback-Leibler divergence between P and Q.
@ Use gradient descent for minimization.

@ Each point attracts or repels all other points with a force F.

Nicola Pezzotti et al. Presented by: Lovedee A-tSNE March 9, 2017 7 /25



Outline
@ Inroduction

@ Barnes-Hut SNE

Nicola Pezzotti et al.

Presented by: Lovedee

A-tSNE

DA



Barnes-Hut SNE

@ Original tSNE uses brute force approach for F.
e Computation and memory complexity of O(n?).
@ Barnes-Hut SNE is an evolution of tSNE.
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Barnes-Hut SNE

Uses two approximations.

Approximation 1: Similarities between data points are computed by
only taking set of nearest neighbours N.

Approximation 2: Uses Barnes-Hut algorithm.

Reduces computational and memory complexity to O(N log(N))) and
O(N) respectively.
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A-tSNE

Introduction

@ Evolution of BH-SNE.
@ Uses approximations to generate useful intermediate results.

@ Approximation defined by user.
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A-tSNE

Introduction

@ Improves BH-SNE using approximated KNN computations for
approximated P.

@ Using a precision parameter p, describe the average percentage of
points in approximated neighbourhood that belong to the exact
neighbourhood.

@ p is user defined, large values of p means better approximations but
more computational overhead.

@ These approximations make A-tSNE computationally steerable.
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A-tSNE

Introduction

Figure: A-tSNE (p = 0.34): 30.1 s Figure: AtSNE (p = 0.07): 13.0 s
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A-tSNE

User driven refinement

@ User selection: Select a subset of points for immediate refinement.

@ Breadth first search: If only a few points are selected, include the
neighbourhoods.

@ Density based refinement: Global overview, user defined selection or
whole dataset.
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A-tSNE

Visualization and interaction

@ Density based: Simple points increase clutter, use KDE.

@ Visualizing approximations: Precision of high dimensional similarities
is gradually refined until exact, requested precision can be visualized

while refinement is ongoing.
@ Use magic lens to show approximations
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A-tSNE

Data manipulation

@ Inserting points

@ Deleting points

@ Dimensionality modification
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A-tSNE

Interface

Embedding viewer

Gradient descent

ity-based Visualization
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Figure: Interface
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A-tSNE

Mouse brain gene expression

Sagittal Coronal
Axial 3D Volume

(d)

Figure: Analysis of the gene expression in the mouse brain using A-tSNE
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A-tSNE

Real-time analysis of high-dimensional streams
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Critique

Enhanced performance.
User selective refinement.

Too many moving parts.

Not sure if all are helpful.
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For Further Reading |

Pezotti et al. 2016

Approximated and user steerable tsne for progressive visual analytics.

IEEE Transactions on Visualization and Computer Graphics, 2016.
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