Ch 10: Color

Tamara Munzner

Department of Computer Science University of British Columbia

CPSC 547, Information Visualization Day 11: 7 Feb 2017

http://www.cs.ubc.ca/~tmm/courses/547-17

Idiom design choices: Encode

→ Use

Encode

Challenges of Color

what is wrong with this picture?

@WTFViz

"visualizations that make no sense"

Top 10 HSC subjects (excluding English)

Categorical vs ordered color

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Decomposing color

- first rule of color: do not talk about color!
 - -color is confusing if treated as monolithic
- decompose into three channels
 - -ordered can show magnitude
 - luminance
 - saturation
 - -categorical can show identity
 - hue

- channels have different properties
 - -what they convey directly to perceptual system
 - -how much they can convey: how many discriminable bins can we use?

Color spaces

• RGB: poor for encoding

- HSL: better, but beware
 - –lightness ≠ luminance

Spectral sensitivity

Opponent color and color deficiency

- perceptual processing before optic nerve
 - one achromatic luminance channel L
 - -intrinsic perceptual ordering
 - -need luminance contrast for edge detection
 - -two chroma channels, R-G and Y-B axis
- "color blind" if one chroma axis has degraded acuity
 - -8% of men are red/green color deficient
 - -blue/yellow is rare

Color information

[Seriously Colorful: Advanced Color Principles & Practices. Stone.Tableau Customer Conference 2014.]

Designing for color deficiency: Check with simulator

Normal vision

Deuteranope Protanope

Tritanope

http://rehue.net

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Designing for color deficiency: Avoid encoding by hue alone

- redundantly encode
 - vary luminance
 - change shape

Change the shape

Vary luminance

Color deficiency: Reduces color to 2 dimensions

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Designing for color deficiency: Blue-Orange is safe

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Bezold Effect: Outlines matter

• color constancy: simultaneous contrast effect

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

→ Categorical

→ Ordered

→ Sequential

→ Diverging

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

→ Categorical
→ Ordered
→ Sequential
→ Diverging
→ Bivariate

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

→ Categorical

→ Ordered

→ Sequential

→ Diverging

→ Bivariate

use with care!

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

- → Categorical
 → Ordered
 → Sequential
 → Diverging
 → Bivariate
 → Here
 - color channel interactions
 - -size heavily affects salience
 - small regions need high saturation
 - large need low saturation
 - -saturation & luminance: 3-4 bins max
 - also not separable from transparency

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons
 - -great if color contiguous
 - -surprisingly bad for absolute comparisons
- noncontiguous small regions of color
 - -fewer bins than you want
 - -rule of thumb: 6-12 bins, including background and highlights

-so what can we do instead?

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

ColorBrewer

- http://www.colorbrewer2.org
- saturation and area example: size affects salience!

- problems
 - -perceptually unordered
 - -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and Treinish. Proc. IEEE Visualization (Vis), pp. 118-125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

problems

- -perceptually unordered
- -perceptually nonlinear

benefits

-fine-grained structure visible and nameable

alternatives

–large-scale structure: fewer hues

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

problems

- -perceptually unordered
- -perceptually nonlinear

benefits

-fine-grained structure visible and nameable

alternatives

- –large-scale structure: fewer hues
- -fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and Treinish. Proc. IEEE Visualization (Vis), pp. 118-125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

problems

- -perceptually unordered
- -perceptually nonlinear

benefits

-fine-grained structure visible and nameable

alternatives

- -large-scale structure: fewer hues
- -fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
- -segmented rainbows for binned
 - or categorical

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and Treinish. Proc. IEEE Visualization (Vis), pp. 118-125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

Viridis

 colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

Map other channels

- size
 - -length accurate, 2D area ok, 3D volume poor
- angle
 - -nonlinear accuracy
 - horizontal, vertical, exact diagonal
- shape
 - -complex combination of lower-level primitives
 - -many bins
- motion
 - -highly separable against static
 - binary: great for highlighting
 - -use with care to avoid irritation

→ Curvature |)))

→ Volume

→ Shape

- Motion
 - → Motion

 Direction, Rate,

 Frequency, ...

Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph

Next Time

- to read
 - -VAD Ch. I I: Manipulate View
 - -Interactive Visualization of Genealogical Graphs. Michael J. McGuffin, Ravin Balakrishnan. Proc. InfoVis 2005, pp 17-24.