Ch 10: Color

Tamara Munzner
Department of Computer Science University of British Columbia
CPSC 547, Information Visualization
Day II: 7 Feb 2017
http://www.cs.ubc.ca/~tmm/courses/547-I7

Idiom design choices: Encode

Encode

Θ Map
from categorical and ordered attributes
\rightarrow Color \rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I/L_ ())
\rightarrow Shape
$+\square \square$
\rightarrow Motion
Direction, Rate, Frequency, ...

Challenges of Color

Top 10 HSC subjects (excluding English)

- what is wrong with this picture?

http://viz.wtf/post//507809488/9/maths-enrolments-drop-to-lowest-rate-in-50-years

Categorical vs ordered color

[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 20I4.]

Decomposing color

- first rule of color: do not talk about color!
-color is confusing if treated as monolithic
- decompose into three channels
- ordered can show magnitude
- luminance
- saturation
- categorical can show identity

Luminance

Saturation

Hue
\square

\square
\square

\square

\square
\square
\square
\square
\square
\square - hue

- channels have different properties
- what they convey directly to perceptual system
-how much they can convey: how many discriminable bins can we use?

Color spaces

- RGB: poor for encoding
- HSL: better, but beware
-lightness \neq luminance

Spectral sensitivity

Opponent color and color deficiency

- perceptual processing before optic nerve
-one achromatic luminance channel L
-intrinsic perceptual ordering
-need luminance contrast for edge detection

-two chroma channels, R-G and Y-B axis
- "color blind" if one chroma axis has degraded acuity
-8\% of men are red/green color deficient
-blue/yellow is rare

Lightness information

Color information

[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 20I4.]

Designing for color deficiency: Check with simulator

Normal vision

Deuteranope Protanope

Tritanope
CTMAN

http://rehue.net
[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 2014.]

Designing for color deficiency:Avoid encoding by hue alone

- redundantly encode
- vary luminance
- change shape

Color deficiency: Reduces color to 2 dimensions

Designing for color deficiency: Blue-Orange is safe

Bezold Effect: Outlines matter

- color constancy: simultaneous contrast effect

[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 20I4.]

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Colormaps

\rightarrow Categorical
$\square \square$
\rightarrow Ordered
\rightarrow Sequential

Binary

Categorical

Sequential

Colormaps

\rightarrow Categorical
$\square \square \square$
\rightarrow Ordered
\rightarrow Sequential

\rightarrow Bivariate
$\stackrel{\downarrow}{\longleftrightarrow}$

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edulfaculty/c/a/cab38/ColorSch/Schemes.html]

Colormaps

\rightarrow Categorical - ■
\rightarrow Ordered

\rightarrow Bivariate
$\stackrel{\downarrow}{\longleftrightarrow}$

use with care!

Binary

Categorical

Diverging

-1 0 +1
Diverging

$-10+1$
0
$\stackrel{9}{5}$
$\stackrel{0}{0}$
0
after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Colormaps

\rightarrow Categorical

\rightarrow Ordered

\rightarrow Bivariate

- color channel interactions
-size heavily affects salience
- small regions need high saturation
- large need low saturation
-saturation \& luminance: 3-4 bins max

Binary

Diverging

Diverging

$-10+1$

Categorical

Categorical

Diverging

Sequential
after [Color Use Guidelines for Mapping and Visualization. Brewer, I994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

- also not separable from transparency

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons -great if color contiguous -surprisingly bad for absolute comparisons
- noncontiguous small regions of color
-fewer bins than you want
-rule of thumb: 6-12 bins, including background and highlights

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

ColorBrewer

- http://www.colorbrewer2.org
- saturation and area example: size affects salience!

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
-perceptually nonlinear
- benefits
-fine-grained structure visible and nameable

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and.Treinish. Proc. IEEE Visualization (Vis), pp. I I 8-I 25, I995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l//loydt/color/color.HTM]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
-perceptually nonlinear
- benefits
-fine-grained structure visible and nameable
- alternatives
-large-scale structure: fewer hues

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
-perceptually nonlinear
- benefits
-fine-grained structure visible and nameable
- alternatives
-large-scale structure: fewer hues
-fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz I998. http://www.research.ibm.com/people/l//lloydt/color/color.HTM]

Ordered color: Rainbow is poor default

- problems

- perceptually unordered
-perceptually nonlinear
- benefits
-fine-grained structure visible and nameable
- alternatives
-large-scale structure: fewer hues
-fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
-segmented rainbows for binned
- or categorical

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz I998. http://www.research.ibm.com/people/l/Iloydt//color/color.HTM]

Viridis

- colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

brewer yellow-green-blue
https://cran.r-project.org/web/packages/ viridis/vignettes/intro-to-viridis.html

Map other channels

- size
-length accurate, 2D area ok, 3D volume poor
- angle
-nonlinear accuracy
- horizontal, vertical, exact diagonal
- shape
-complex combination of lower-level primitives
-many bins
- motion
-highly separable against static
- binary: great for highlighting
-use with care to avoid irritation
Θ Size, Angle, Curvature, ...
\rightarrow Length
\rightarrow Angle
\rightarrow Area
\rightarrow Curvature
\rightarrow Volume
Θ Shape
$+\square \square \Delta$
Θ Motion

$$
\begin{aligned}
& \rightarrow \text { Motion } \\
& \quad \text { Direction, Rate, } \\
& \text { Frequency, ... }
\end{aligned}
$$

Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph

Next Time

- to read
-VAD Ch. II: Manipulate View
-Interactive Visualization of Genealogical Graphs. Michael J. McGuffin, Ravin Balakrishnan. Proc. InfoVis 2005, pp 17-24.

