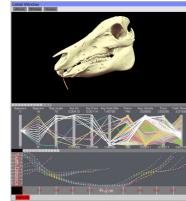

Example Presentation: Biomechanical Motion Tamara Munzner Department of Computer Science	Example Presentation: Biomechanical Motion	 Presentation expectations 25 minute time slots for presentations -aim for 20 min presenting and 5 min discussion slides required -if you're using my laptop, send to me by 2pm -if you're using your own, send to me by 6pm (right after class) three goals: up to you whether sequential or interleaved -explain core technical content to audience 	Analysis & • paper type – required fo – some possi • but more – minimal for • but can dia
University of British Columbia CPSC 547, Information Visualization Day 16: 2 March 2017 http://www.cs.ubc.ca/~tmm/courses/547-17	2	 -analyze with doing what/why/how framework - critique strengths/weaknesses of technical paper marking criteria - Summary 40%, Analysis 15%, Critique 15% - Presentation Style 15%, Materials Preparation 15% 	• please distint thoughts/cr –good to pr
 Beyond paper itself check for author paper page may have video may have talk slides you could borrow as a base do acknowledge if so! may have demo or supplemental material include paper page URL in slides if it exists if using video, consider when it's most useful to show at very start for overview of everything after you've explained some of background after you've walked us through most of interface, to show interaction in specific 	 Slides do include both text and images text font must be readable from back of room 24 point as absolute minimum use different type sizes to help guide eye, with larger title font avoid micro text with macro whitespace bullet style not sentences sub-bullets for secondary points Compare what it feels like to read an entire long sentence on a slide; while complex structure is a good thing to have for flow in writing, it's more difficult to parse in the context of a slide where the speaker is speaking over it. legibility remember luminance contrast requirements with colors! 	 Slide images figures from paper -good idea to use figures from paper, especially screenshots judgement call about some/many/all new images you might make new diagrams you might grab other images, especially for background or if comparing to prev work -avoid random clip art images alone often hard to follow images do not speak for themselves, you must walk us through them text bullets to walk us through your highest-level points -hard to follow if they're only made verbally judgement call on text/image ratio, avoid extremes 	Style • face audient – pro tip: you • project void – avoid mutte – avoid robot • avoid readir – judgement • use laser po – avoid const • practice, pr – for flow of • question ha
 Technical talks advice How To Give An Academic Talk Paul N. Edwards How To Give a Great Research Talk Simon L Peyton Jones, John Hughes, and John Launchbury How To Present A Paper Leslie Lamport Things I Hope Not To See or Hear at SIGGRAPH Jim Blinn Scientific Presentation Planning Jason Harrison 	Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009. http://tvlab.cs.umn.edu/generated/pub-Keefe-2009-MultiViewVis.php	 Biomechanical motion design study large DB of 3D motion data pigs chewing: high-speed motion at joints, 500 FPS w/ sub-mm accuracy domain tasks functional morphology: relationship between 3D shape of bones and their function what is a typical chewing motion? how does chewing change over time based on amount/type of food in mouth? abstract tasks trends & anomalies across collection of time-varying spatial data understanding complex spatial relationships pioneering design study integrating infovis+scivis techniques let's start with video showing system in action 	Multiple lin • data: 3D sp • encode: 3D • facet: few la – encode: coi – view coord line in parc frame in sn [Fig 1. Interactive Coor William Ribarsky, Rem
 3D+2D change -3D navigation rotate/translate/zoom filter -zoom to small subset of time facet -select for one large detail view -linked highlighting -linked navigation between all views driven by large detail view 	Derived data: traces/streamers derived data: 3D motion tracers from interactively chosen spots generates x/y/z data over time streamers shown in 3D views directly populates 2D plots 	Small multiples for overview - aggressive/ambitious, 100+ views encode: color code window bg by trial • filter: - full/partial skull - streamers • simple enough to be useable at low information density	Derived da • derived da -3D surfa • facet -superimp • encoding -color co
• between all views	[Fig 4. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.] ₁₄		[Fig 5. Interactiv William Ribarsk

	Analysis & critique
ations discussion by 2pm by 6pm (right after class) equential or interleaved dience amework hnical paper	 paper type dependent required for design studies and technique papers some possible for algorithm papers but more emphasis on presenting algorithm clearly minimal for evaluation papers but can discuss study design and statistical analysis methods please distinguish: their analysis (future work, limitations) from your own thoughts/critiques good to present both
eparation 15%	
especially screenshots ally for background or if comparing to prev work v you must walk us through them ghest-level points ly id extremes	Style • face audience, not screen -pro tip: your screen left/right matches audience left/right in this configuration • project voice so we can hear you -avoid muttered comments to self, volume drop-off at end of slide -avoid robot monotone, variable emphasis helps keep us engaged • avoid reading exactly what the slide says -judgement call: how much detail to have in presenter notes • use laser pointer judiciously -avoid constant distracting jiggle • practice, practice, practice -for flow of words and for timing • question handling: difficult to practice beforehand
study	Multiple linked spatial & non-spatial views
pints, 500 FPS w/ sub-mm accuracy between 3D shape of bones and their function based on amount/type of food in mouth?	 data: 3D spatial, multiple attribs (cyclic) encode: 3D spatial, parallel coords, 2D line (xy) plots facet: few large multiform views, many small multiples (~100) encode: color by trial for window background view coordination: line in parcoord ==
of time-varying spatial data onships ng infovis+scivis techniques tem in action	frame in small mult
$\frac{v}{y \text{ trial}}$	 Derived data: surface interactions derived data -3D surface interaction patterns facet -superimposed overlays in 3D view encoding -color coding
of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, and Combuter Graphics (Proc. Vis 2009), 15(6);1383-1390, 2009,1	[Fig 5. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang, IEEE Trans, Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.1

Side by side views demonstrating tooth slide

- facet: linked navigation w/ same 3D viewpoint for all
- encode: coloured by vertical distance separating teeth (derived surface interactions) -also 3D instantaneous helical axis showing motion of mandible relative to skull

[Fig 6. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang, IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.]₁₇


Reminders

• proposals Monday

-last reminders to you after last round of meetings on structure expectations

Cluster detection

- identify clusters of motion cycles -from combo: 2D xy plots & parcoords -show motion itself in 3D view
- facet: superimposed layers
- -foreground/background layers in parcoord view itself

[Fig 7. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.] ₁₆

Analysis summary

- what: data -3D spatial, multiple attribs (cyclic)
- what: derived
- -3D motion traces
- -3D surface interaction patterns
- how: encode
- -3D spatial, parallel coords, 2D plots
- -color views by trial, surfaces by interaction patterns
- -filtering [Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcu Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-139

• how: change

• how: facet

how: reduce

	Critique
 how: change -3D navigation how: facet -few large multiform views -many small multiples (~100) -linked highlighting -linked navigation -layering how: reduce -filtering 	 many strengths carefully designed with well justified design choices explicitly followed mantra "overview first, zoom and filter, then details-on-demand" sophisticated view coordination tradeoff between strengths of small multiples and overlays, use both
tion Data. Daniel F. Keefe, Marcus Ewert, William (Proc. Vis 2009), 15(6):1383-1390, 2009.] ₁₉	20