ThermalPlot: Visualizing Multi-Attribute Time-Series Data Using a Thermal Metaphor

Holger Stitz, Samuel Gratzl, Wolfgang Aigner, Marc Streit.

IEEE Transactions on Visualization and Computer Graphics (Volume: 22, Issue: 12, Dec. 1 2016)

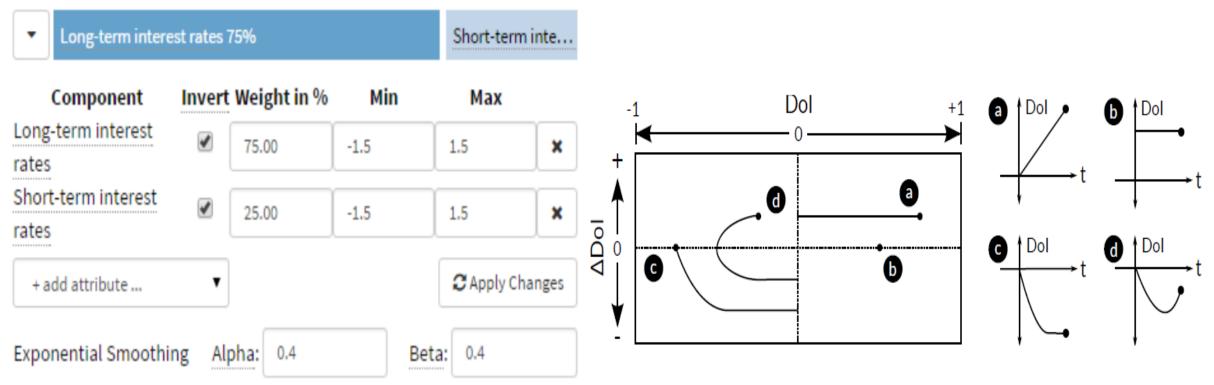
Presented by: Arash Shadkam

https://thinkh.github.io/paper-2015-thermalplot/#publication

ThermalPlot Technique

- Multi-attribute time-series data
 - > Large number of items with multiple attributes changing over time
 - Economics, sensor networks
- Challenges
 - > Overview of items showing *Interesting* temporal developments
 - Integrating multiple heterogeneous attributes of a collection of items
 - Multiple levels of temporal dynamics
- Solution?
 - > ThermalPlot visualization technique!
 - > Encoding changes in attributes into an item's position
 - Position based on a degree-of-interest (DOI) function

Previous work


- Multi-attribute item comparison
 - Across multiple attributes of a single item
 - Across a single attribute of multiple items
 - ✓ Superimposing multiple curves in a line chart
- Temporal dynamics
 - Mapping time to time
 - ✓ Animations, <u>Gapminder Trendalyzer</u>
 - Mapping time to space
 - ✓ Cycle Plot
 - ✓ Small multiples, <u>LiveRac</u>
 - Trajectories
 - ✓ <u>DimpVis</u>

ThermalPlot Concept

• Fundamental idea

User-specified degree-of-interest (DOI) value

Degree-of-Interest (Dol)

Math behind the DOI

• DOI

$$\begin{aligned} DoI_{raw}(t) &= \sum_{i=1}^{n} w_i \times v_i(t) \mid \sum_{i=1}^{n} w_i = 1. \\ DoI(t) &= \alpha \times DoI_{raw}(t) + (1 - \alpha) \times \\ (DoI_{raw}(t - 1) + DoI_{trend}(t - 1)) . \\ DoI_{trend}(t) &= \beta \times (DoI(t) - DoI(t - 1)) + \\ (1 - \beta) \times DoI_{trend}(t - 1). \end{aligned}$$

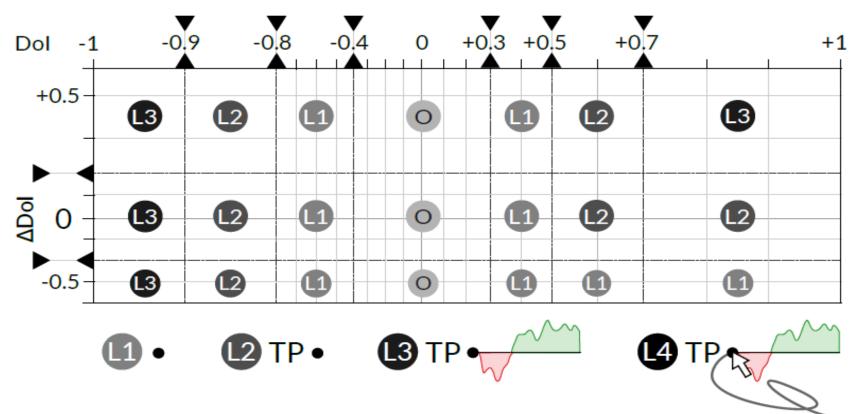
• Delta(DOI)

 $\Delta DoI(t) = DoI(t) - DoI(t - \Delta t).$

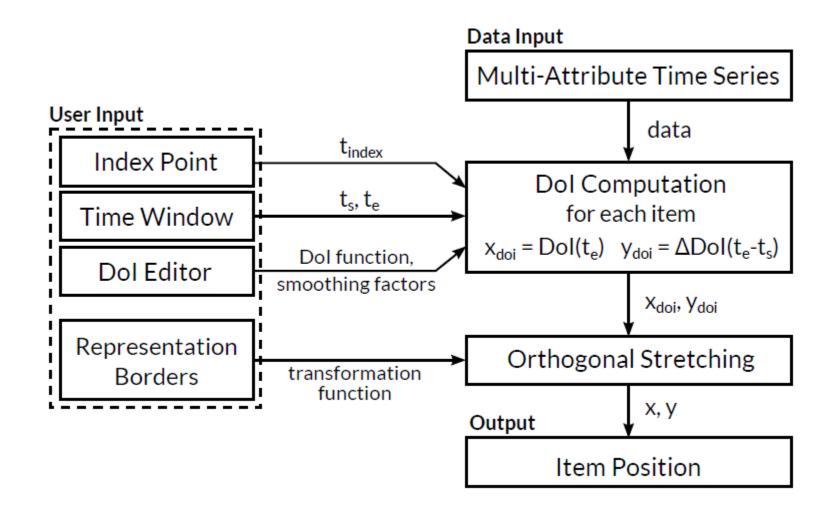
• Normalization

$$v_{rel}(t) = \frac{v(t) - v(t_{index})}{v(t_{index})}.$$

- User tasks
 - > Monitor the development of multiple items in a certain time window
 - Select attributes and define their interestingness
 - > Detect items that are most interesting
 - Understand why the items are considered to be interesting
 - Monitor the development of a single item



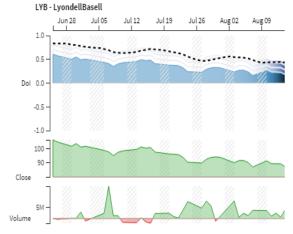
Problem?!

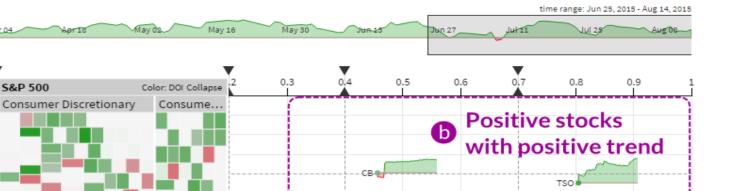


Clutter Reduction Strategies

- Semantic Zooming
- Orthogonal Stretching

Data Flow


Use case



Degree-of-Interest (Dol)

2,100

2,050

ΔDOI

DOI

Jan 10

Feb 07

Jan 24

Feb 21

-0.6

Mar 21

-0.3

Mar 07

-0.5

-0.4

Analysis Summary

- What: data
 - Time-series, multiple attributes, multiple items
- What: derived
 - DOI and Delta(DOI) values based on user input
- How: encode
 - Item's position
 - > Diverging colors
- How: Manipulate
 - Select
- How: Facet
 - > Juxtapose
- How: Reduce
 - Focus+Context

- Why: Action
 - > Discover
 - Browse
 - Identify
- Why: Target
 - > Trends
 - Distribution

Critique

- Strength
 - Wise choice of item's position
 - Capability to handle large data sets
 - Use of overview and details on demand
- Weakness
 - No look-up scenarios anticipated
 - Animation for live data streaming
 - Adjusting the representation borders

THANKS !