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Motivation

* Strengths of ML allowed expansion to diverse fields
e Fields and contexts far removed from traditional ML
e Users not trained in ML

* Eg. Medical field: Doctors use ML to predict disease given symptoms

* The ML is a black box to them: Input — ? — Output
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Previous Work

The prediction, given by Linear Regeression, is Y

The most important evidence for the prediction is in SLOPE and Y_PRIOR. This =
15 normal, as these features are often important for predictions of this class. '
missing in this case. % 14 |l|

Mormally, we would see powerful counter-evidence in DIAMETER, but it 1s

Significant counter-evidence exists in VENUE. This is exceptional, as it is not 0 —
usually a strong feature |l|
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- VENUE (Exceptional counter-evidence)

Figure: Biran, O., MckKeown, K. (2014). Justification Narratives for Individual Classifications. AutoML workshop at ICML 2014.



Previous Work

The prediction, given by Linear Regeression, is Y
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Figure: Biran, O., MckKeown, K. (2014). Justification Narratives for Individual Classifications. AutoML workshop at ICML 2014.



Goals

e Justify a ML prediction to a non-expert user

* Show features providing evidence for/against the prediction
* Select and visualize key features

* Focus on interpretable models

* Simplicity not complexity...

Figure: Munzner, T. (2014). Visualization Analysis and Design. CRC Press.
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Feature Visualizing

Vis can show effect and importance?

* Effect: extent to which a feature contributes toward or against
prediction
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* |Importance: Expected effect of the feature for a particular class
(mean feature value for the class)
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Biran, 0., MckKeown, K. (2014). Justification Narratives for Individual Classifications. AutoML workshop at ICML 2014.



Abstraction

 Some raw data: arbitrary data with training/test sets
e Task abstraction:

- Analyze: discover, enjoy, derive
e Data abstraction:
- Items, attributes, values in a table

 Two quantitative variables: effect, importance -- scatterplot
effective



Demo



Future Direction

NLG implemented
Full web app implementation

Expanded scope:

Narrative
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Thanks!

Questions?



Prediction Justification

Prediction Narrative

The prediction is Against
Survived.

The effect of a feature is the
amount it contributes for or
against a positive prediction.
The importance of a feature is
the expected effect of a
feature.

Clicking the Key Features
button in the scatterplot
displays a highlighted area in
which any overlapping points
on the graph are both high
effect and high importance.
Key Features are those that
contribute strongly either to
or against a prediction as
expected.

Sex is a key feature with a
high effect and high
importance. Age is a key
feature with a high effect and
high importance. Embarked_C
is a key feature with a high
effect and high importance.

The features that contribute
strongly to this prediction are
Sex and Age.
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