Automatic Selection of Partitioning Variables for Small Multiple Displays

Anushka Anand, Justin Talbot

Presented by Yujie Yang, CPSC 547 Information Visualization

Agenda

- Introduction
- Goodness-of-Split Criteria
- Algorithm
- Validation
- Conclusion
- Comments

Introduction

- Authors - from Tableau Research
- Anushka Anand
- Justin Talbot
- IEEE TRANSACTIONS ONVISUALIZATION AND COMPUTER GRAPHICS(TVCG)
- January 2016

Introduction

- What: multidimensional data sets
- Why: For small multiples, automatically select the partitioning variables?
- How?
- Cognostics
- Firstly introduced by John and Paul Tukey
- Wilkinson extended original idea
- "Judge the relative interest of different displays"
- Scagnostics - scatterplot diagnostics

Introduction - Scagnostics

Goodness-of-Split Criteria

- Visually rich
, Convey rich visual patterns
- Informative
- More informative than the input
- Well-supported
- Convey robust and reliable patterns
- Parsimonious
- All things being equal, then fewer partitions

Algorithm

Automatically select interesting partitioning dimensions

Select small multiples that have scagnostic values that are unlikely to be due to chance

Likelihood of a small multiple's scagnostic value (smaller likelihood means unlikely to be due to chance)

Algorithm

Algorithm

- Input:

- Scatterplot
- Scagnostic: skewed
- Partitioning Variable: distance to employment center

Data:
X: proportion of old houses built before 1940 for census tracts in Boston
Y: median value of owner-occupied houses

Algorithm

(a)

(b)

(c)

(d)
(a)Input scatterplot
(b)Partitioned by distance
(c) Partitioned by random permutation
(d)Distribution of Skewed value

Algorithm

- Permutation test
- Chebyshev's inequality:

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\frac{(X-\mu)}{\sigma}\right| \geq k\right) \leq \frac{1}{k^{2}} . \\
& \left|z_{i}\right|=\left|\frac{\left(X_{i}-\mu_{i}\right)}{\sigma_{i}}\right|
\end{aligned}
$$

- Output:

$$
z=\max _{i}\left|z_{i}\right|
$$

Where X_{i} is the true scagnostic value of the i-th partition and μi and σi are the mean and standard deviation of the scagnostic measures over the repeated random permutations of the i-th partition.

Algorithm

Algorithm	Automatic Selection of partitioning variables
What: Data	multidimensional data sets; scatterplot
Why:Task	Automatically select variables to divide scatterplot into small multiples
How: Facet	Small multiples
How: Input	Scatterplot; scagnostic; partitioning variables
How: Output	Max of z-scores
Scale	Items: thousands; dimensions: dozens

Validation - Visually rich

- Visually striking clumps and striation patterns

(a) Input scatterplot

Data:
X: linolenic measurement in olive oil specimens in Italy
Y: linoleic measurement in olive oil specimens in Italy

Validation - Visually rich

(b) Highest-ranked small multiple display, partitioned by region

- Scagnostic: striated
- Partitioning Variable: region

Validation - Informative

- Increasing and decreasing trends seem to be overlaid

(a) Input scatterplot

Data:
X : death rate of world countries
Y: birth rate of world countries

Validation - Informative

(b) Partitioned by GDP category

- Best case
- Scagnostic: monotonic
- Partitioning Variable: GDP category

(c) Partitioned by the dominant religion
- Worst case
- Scagnostic: monotonic
- Partitioning Variable: dominant religion

Validation - Well-supported

- Run the algorithm for different size of the input data

Validation - Well-supported

(a) Random 10% of the full dataset partitioned by admit ACT scores.

(b) Full dataset partitioned by admit ACT scores.

- Random I0\% of full dataset
, Scagnostic: monotonic
- Partitioning variable: admit ACT scores
, Z-score: 3.6

- Full dataset
, Scagnostic: monotonic
- Partitioning variable: admit ACT scores
- Z-score: 16.4

Validation - Parsimonious

- Artificially generated dataset
- Scagnostic: clumpy

Conclusion

- Described a set of goodness criteria for evaluating small multiples
- Proposed a method for automatically ranking the small multiple displays created by the partitioning variables in a data set
- Demonstrated the method meets the criteria
- Future:
- Scatterplot -> different visualization type
- Scagnostics -> wide range of quality measures
- Evaluating small multiple -> different analytic goals

Comments

- As mentioned in their discussion:
- Lack of examples about different visualization types or analytic goals
> Not deal with correlation between input and partitioning variables
- Max of z-scores VS average of z-scores
- More critiques:
- Their method meets their criteria?
- Use the idea of permutation test, but lack of exact likelihood (or p-value) of the cognostic score in the examples
- Weak proof of the support to the criterias

Thank you!

Reference

[I] Anand A, Talbot J.Automatic Selection of Partitioning Variables for Small Multiple Displays[J]. 2016.
[2] Friedman J H, Stuetzle W. John W.Tukey's work on interactive graphics[J].Annals of Statistics, 2002: 1629-1639.
[3] Wilkinson L,Anand A, Grossman R L. Graph-Theoretic Scagnostics[C]//INFOVIS. 2005, 5: 21.
[4] Wilkinson L,Wills G. Scagnostics distributions[J]. Journal of Computational and Graphical Statistics, 2008, I7(2): 473-49I.

