
http://www.cs.ubc.ca/~tmm/courses/547-15

Ch 4: Validation
Paper: D3

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
Day 6: 29 September 2015

http://www.cs.ubc.ca/~tmm/talks.html
http://www.cs.ubc.ca/~tmm/talks.html

News

• LAVA Hackathon Oct 24-25
– http://blogs.ubc.ca/lava/
– Learning Analytics, Visual Analytics
– there are no lectures in this class that week

• if you want to avoid withdrawal :-)

2

http://blogs.ubc.ca/lava/
http://blogs.ubc.ca/lava/

VAD Ch 4: Analysis: Four Levels for Validation

3

Data/task abstraction

Visual encoding/interaction idiom

Algorithm

Domain situation

4

Four Levels of Design and Validation

• four levels of design problems
– different threats to validity at each level

Domain situation
You misunderstood their needs

You’re showing them the wrong thing

Visual encoding/interaction idiom
The way you show it doesn’t work

Algorithm
Your code is too slow

Data/task abstraction

5

• mismatch: cannot show idiom good with system timings
• mismatch: cannot show abstraction good with lab study

Nested Levels of Design and Validation

Domain situation
Observe target users using existing tools

Visual encoding/interaction idiom
Justify design with respect to alternatives

Algorithm
Measure system time/memory
Analyze computational complexity

Observe target users after deployment ()

Measure adoption

Analyze results qualitatively
Measure human time with lab experiment (lab study)

Data/task abstraction

6

Directionality

Data/task abstraction

Visual encoding/interaction idiom

Algorithm

Domain situation
problem-driven

work

technique-driven
work

Paper: D3

• paper types
– design studies
– technique/algorithm
– evaluation
– model/taxonomy
– system

• today’s emphasis

7

[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis), 2011.]

http://vis.stanford.edu/papers/d3
http://vis.stanford.edu/papers/d3

Toolkits

• imperative: how
– low-level rendering: Processing, OpenGL
– parametrized visual objects: prefuse

• also flare: prefuse for Flash

• declarative: what
– Protoviz, D3, ggplot2
– separation of specification from execution

• considerations
– expressiveness

• can I build it?

– efficiency
• how long will it take?

– accessibility
• do I know how? 8

OpenGL

• graphics library
– pros

• power and flexibility, complete control for graphics
• hardware acceleration
• many language bindings: C, C++, Java (w/ JOGL)

– cons
• big learning curve if you don’t know already
• no vis support, must roll your own everything

– example app: TreeJuxtaposer

9

[Fig 5. Munzner et al. TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed
Visibility. Proc SIGGRAPH 2003, pp 453-462.]

Processing

• layer on top of Java/OpenGL
• visualization esp. for artists/designers
• pros

– great sandbox for rapid prototyping
– huge user community, great documentation

• cons
– poor widget library support

• example app: MizBee

10[Fig 1. Meyer et al. MizBee: A Multiscale Synteny Browser. Proc. InfoVis 2009.]

prefuse

• infovis toolkit, in Java
• fine-grained building blocks for tailored visualizations
• pros

– heavily used (previously)
– very powerful abstractions
– quickly implement most techniques covered so far

• cons
– hasn’t been under active development for a long time now
– nontrivial learning curve

• example app: DOITrees Revisited

11

[DOITrees Revisited: Scalable, Space-Constrained Visualization of Hierarchical Data. Heer and Card.
Proc. Advanced Visual Interfaces (AVI), pp. 421–424, 2004.]

prefuse

• separation: abstract data, visual form, view
– data: tables, networks
– visual form: layout, color, size, ...
– view: multiple renderers

12

[Fig 2. Heer, Card, and Landay. Prefuse: A Toolkit for Interactive Information Visualization. Proc. CHI
2005, 421-430]

InfoVis Reference Model

• conceptual model underneath design of prefuse and many other toolkits
• heavily influenced much of infovis (including nested model)

– aka infovis pipeline, data state model

13

[Redrawn Fig 1.23. Card, Mackinlay, and Shneiderman. Readings in Information Visualization: Using Vision
To Think, Chapter 1. Morgan Kaufmann, 1999.]

Declarative toolkits

• imperative tools/libraries
– say exactly how to do it
– familiar programming model

• OpenGL, prefuse, ...

• declarative: other possibility
– just say what to do
– Protovis, D3

14

Protovis

• declarative infovis toolkit, in Javascript
– also later Java version

• marks with inherited properties
• pros

– runs in browser
– matches mark/channel mental model
– also much more: interaction, geospatial, trees,...

• cons
– not all kinds of operations supported

• example app: NapkinVis (2009 course project)

15[Fig 1, 3. Chao. NapkinVis. http://www.cs.ubc.ca/∼tmm/courses/533-09/projects.html#will]

http://www.cs.ubc.ca
http://www.cs.ubc.ca

Protovis Validation

• wide set of old/new app examples
– expressiveness, effectiveness, scalability
– accessibility

• analysis with cognitive dimensions of notation
– closeness of mapping, hidden dependencies
– role-expressiveness visibility, consistency
– viscosity, diffuseness, abstraction
– hard mental operations

16

[Cognitive dimensions of notations. Green (1989). In A. Sutcliffe and

L. Macaulay (Eds.) People and Computers V. Cambridge, UK: Cambridge University Press, pp 443-460.]

D3

• declarative infovis toolkit, in Javascript
• Protovis meets Document Object Model
• pros

– seamless interoperability with Web
– explicit transforms of scene with dependency info
– massive user community, many thirdparty apps/libraries on top of it, lots of docs

• cons
– even more different from traditional programming model

• example apps: many

17

D3

• objectives
– compatibility
– debugging
– performance

• related work typology
– document transformers
– graphics libraries
– infovis systems

• general note: all related work sections are a mini-taxonomy!

18

[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis), 2011.]

http://vis.stanford.edu/papers/d3
http://vis.stanford.edu/papers/d3

D3 capabilities

• query-driven selection
– selection: filtered set of elements queries from the current doc

• also partitioning/grouping!

– operators act on selections to modify content
• instantaneous or via animated transitions with attribute/style interpolators
• event handlers for interaction

• data binding to scenegraph elements
– data joins bind input data to elements
– enter, update, exit subselections
– sticky: available for subsequent re-selection
– sort, filter

19

[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis), 2011.]

http://vis.stanford.edu/papers/d3
http://vis.stanford.edu/papers/d3

D3 Features

• document transformation as atomic operation
– scene changes vs representation of scenes themselves

• immediate property evaluation semantics
– avoid confusing consequences of delayed evaluation

• validation
– performance benchmarks

• page loads, frame rate

– accessibility
• everybody has voted with their feet by now!

20

Next Time

• to read
– VAD Ch. 7: Tables
– Visualizing Sets and Set-typed Data: State-of-the-Art and Future Challenges, Bilal

Alsallakh, Luana Micallef, Wolfgang Aigner, Helwig Hauser, Silvia Miksch, and Peter
Rodgers. EuroVis State of The Art Report 2014.
• paper type: survey

21

https://kar.kent.ac.uk/39007/1/STAR_paper.pdf
https://kar.kent.ac.uk/39007/1/STAR_paper.pdf

Now

• guest lectures on tools & resources
– Matt Brehmer
– http://www.cs.ubc.ca/group/infovis/resources.shtml

22

http://www.cs.ubc.ca/group/infovis/resources.shtml
http://www.cs.ubc.ca/group/infovis/resources.shtml

