Reducing Snapshots to points

A visual analytics approach to Dynamic Exploration

What: Understand the evolution of dynamic networks.

 Many methods for analyzing a static network (or a "snapshot")

- ...but fewer methods for analyzing dynamic networks
- Two common approaches are "animation" and "small multiples"

- Their approach: Reduce each "snapshot" to a 2D point and show the evolution of these points.
- Allow users to select a point to see snapshot

- Why: "The identification of stable states, recurring states, outlier states, and transitions between these states helps in understanding the network."
- Examples of dynamic networks include: (tele-)communication networks, social networks, financial networks, and transportation networks.

- **How**: Four Step Process:
 - 1. Discretization 3. Dimensionality Reduction
 - 2. Vector Normalization 4. Visualization interaction

1) Discretization

2) Vector Normalization

How?

Points in highdimensional space

3) Dimensionality Reduction

How?

2D Projection

4) Visualization interaction

What: Data	Dynamic Network
What: Derived	Snapshots of network reduced to 2D points
Why: Tasks	Identify stable states, reoccurring states, outlier states and transitions between those states
How: Reduce	Dimensionality Reduction
How: Encode	Node colour encoded with attribute
How: Facet	Snapshot view as context, network view as focus
How: Manipulate	Zoom and pan
Scale:	Original Attributes: Hundreds Reduced attributes: 2 Nodes: 180 Edges: 10104 Timestep: 2015
11	

How?

- Reduction shows four stable states and transitions between
- One reoccurring state
- Colour encodes time
- Grey insets show representative snapshots.

2D Snapshot Reduction

- Alternative view plots time along x axis
- Four stable states
- One reoccurring state (lowest tier)

A Case Study

A Case Study

- Interested in tracking face-to-face contact between persons in context of determining how infectious diseases spread within a population.
- Dataset is 7 days of face-to-face contact between high school students for 7 school days (MTWTFMT)
- The dynamic network consists of 180 nodes (students), 45047 contacts, and 10,104 unique edges.

- Colour spans full seven days
- t-SNE reduction
- Central cluster showing reoccurring state (nighttime, no face-to-face interaction)
- Breaks indicate school day rhythm

- Colour spans each day
- Network structure shown for each day
- Colour indicates that breaks happen at same time each day
- Wednesday more sparse than other days

- Time vs. 1st principal component view
- One reoccurring stable state
- Multiple days visible over weekend

Conclusion

- What? Dynamic network visualization by reducing snapshots to points
- Why? To identify stable, reoccurring and outlier states and transitions between these states
- **How?** Four step process: *discretization, vectorization, dimensionality reduction, and visualization*

Comments

- Not convinced this is better than animation or small multiples in detecting states
- Simple concept but computationally expensive -PCA is O(n²v²)
- Perhaps difficult to understand for non-technical users

Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration

ormalize