Ch 7+8: Tables, Spatial Data

Tamara Munzner

Department of Computer Science University of British Columbia

CPSC 547, Information Visualization
Day 8: 6 October 2015
http://www.cs.ubc.ca/~tmm/courses/547-I 5

News

- clarification on artery vis
- diverging colormap since doctors care about high and low values
- not much about the ones in the middle
- personal communication with Borkin, not clearly stated in paper
- second guest lecture today from Kosara
- vis for presentation (versus discovery/exploration)
- then continue with lecture/discussion
- catch up on chapters, leave papers for Thu
- remember
-I have office hours on Tuesdays
- pitches are coming up Thu Oct 22
-start talking to me about project ideas!

VAD Ch 7:Arrange Tables

Encode
Θ Arrange

\rightarrow Use

Arrange tables

Θ Express Values

Θ Separate, Order, Align Regions
\rightarrow Separate

\rightarrow Order

\rightarrow Align

$$
\rightarrow 1 \text { Key }
$$

List
m 目
$\rightarrow 2$ Keys
Matrix
\#

$\rightarrow 3$ Keys

 Volume
Θ Axis Orientation
\rightarrow Rectilinear

Θ Layout Density

[^0]
\rightarrow Dense $\quad \rightarrow$ Space-Filling

\rightarrow Parallel

\rightarrow Radial

Keys and values

\rightarrow Tables

- key
- independent attribute
- used as unique index to look up items

Attributes (columns)

\rightarrow Multidimensional Table

-0, I, 2, many...Express Values

$\rightarrow 2$ Keys
Matrix

\rightarrow Many Keys Recursive Subdivision

Idiom: scatterplot

- express values
- quantitative attributes
- no keys, only values
- data
- 2 quant attribs
-mark: points
- channels
- horiz + vert position
-tasks

- find trends, outliers, distribution, correlation, clusters
- scalability
- hundreds of items

Some keys: Categorical regions

\rightarrow Order

\rightarrow Align

- regions: contiguous bounded areas distinct from each other
- using space to separate (proximity)
-following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Idiom: bar chart

- one key, one value
- data
- I categ attrib, I quant attrib -mark: lines
- channels

Animal Type

Animal Type

- length to express quant value
- spatial regions: one per mark
- separated horizontally, aligned vertically
- ordered by quant attrib » by label (alphabetical), by length attrib (data-driven)
- task
- compare, lookup values
- scalability
- dozens to hundreds of levels for key attrib

Idiom: stacked bar chart

- one more key
- data
- 2 categ attrib, I quant attrib
-mark: vertical stack of line marks

- glyph: composite object, internal structure from multiple marks
- channels
- length and color hue
- spatial regions: one per glyph
- aligned: full glyph, lowest bar component
- unaligned: other bar components
- task
- part-to-whole relationship
- scalability
- several to one dozen levels for stacked attrib
[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 200 I.]

Idiom: streamgraph

- generalized stacked graph
- emphasizing horizontal continuity
- vs vertical items
- data
- I categ key attrib (artist)
- I ordered key attrib (time)
- I quant value attrib (counts)
- derived data
- geometry: layers, where height encodes counts
- I quant attrib (layer ordering)
- scalability
- hundreds of time keys
- dozens to hundreds of artist keys
- more than stacked bars, since most layers don't extend across whole chart

Idiom: line chart

- one key, one value
- data
- 2 quant attribs
-mark: points
- line connection marks between them
- channels
- aligned lengths to express quant value

- separated and ordered by key attrib into horizontal regions
-task
- find trend
- connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib -bar charts if categorical - line charts if ordered
- do not use line charts for categorical key attribs
- violates expressiveness principle
- implication of trend so strong that it overrides semantics!
-"The more male a person is, the taller he/she is"

Idiom: heatmap

- two keys, one value
- data
- 2 categ attribs (gene, experimental condition)
- I quant attrib (expression levels)
-marks: area
- separate and align in 2D matrix
- indexed by 2 categorical attributes
- channels
- color by quant attrib
- (ordered diverging colormap)
- task
- find clusters, outliers
- scalability
- IM items, 100 s of categ levels, ~ 10 quant attrib levels

Idiom: cluster heatmap

- in addition
- derived data
- 2 cluster hierarchies
- dendrogram
- parent-child relationships in tree with connection line marks
- leaves aligned so interior branch heights easy to compare

-heatmap
- marks (re-)ordered by cluster hierarchy traversal
Θ Axis Orientation
\rightarrow Rectilinear
\rightarrow Parallel
\rightarrow Radial

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
- rectilinear axes, point mark
- all possible pairs of axes
- scalability
- one dozen attribs
- dozens to hundreds of items
- parallel coordinates

- parallel axes, jagged line representing item
- rectilinear axes, item as point
- axis ordering is major challenge
- scalability
- dozens of attribs

Table

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

- hundreds of items

Task: Correlation

- scatterplot matrix

- positive correlation
- diagonal low-to-high
-negative correlation
- diagonal high-to-low - uncorrelated

- parallel coordinates

- positive correlation
- parallel line segments
- negative correlation
- all segments cross at halfway point
- uncorrelated
- scattered crossings

Idioms: radial bar chart, star plot

- radial bar chart
- radial axes meet at central ring, line mark
- star plot
- radial axes, meet at central point, line mark
- bar chart
-rectilinear axes, aligned vertically

- accuracy
- length unaligned with radial
- less accurate than aligned with rectilinear

Idioms: pie chart, polar area chart

- pie chart
-area marks with angle channel
-accuracy: angle/area much less accurate than line length

- polar area chart
- area marks with length channel
- more direct analog to bar charts

- data
- I categ key attrib, I quant value attrib
- task

- part-to-whole judgements

Idioms: normalized stacked bar chart

- task
- part-to-whole judgements
- normalized stacked bar chart
- stacked bar chart, normalized to full vert height
- single stacked bar equivalent to full pie
- high information density: requires narrow rectangle
- pie chart

- information density: requires large circle

Idiom: glyphmaps

- rectilinear good for linear vs nonlinear trends

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models. Wickham, Hofmann, Wickham, and Cook. Environmetrics 23:5 (20I2), 382-393.]

Orientation limitations

- rectilinear: scalability wrt \#axes
- 2 axes best
- 3 problematic
-more in afternoon
- 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
-angles lower precision than lengths
-asymmetry between angle and length
- can be exploited!
[Uncovering Strengths and Weaknesses of Radial Visualizations an Empirical Approach. Diehl, Beck and Burch. IEEE TVCG (Proc. InfoVis) I6(6):935-942, 20I0.]

Θ Axis Orientation

\rightarrow Rectilinear

\rightarrow Parallel

\rightarrow Radial

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
-Chap 7:Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, I993.

Arrange spatial data

Use Given

\rightarrow Geometry
\rightarrow Geographic
\rightarrow Other Derived

\rightarrow Spatial Fields
\rightarrow Scalar Fields（one value per cell）
\rightarrow Isocontours
\rightarrow Direct Volume Rendering
\rightarrow Vector and Tensor Fields（many values per cell）
\rightarrow Flow Glyphs（local）
\rightarrow Geometric（sparse seeds）
\rightarrow Textures（dense seeds）
\rightarrow Features（globally derived）

```
\kappa个个个ス
K「イス\pi
\kappa个个ス个
\kappa「个ス个
```


Idiom: choropleth map

- use given spatial data
- when central task is understanding spatial relationships
- data
- geographic geometry
- table with I quant attribute per region
- encoding

- use given geometry for area mark boundaries
- sequential segmented colormap

Idiom: topographic map

- data
- geographic geometry
- scalar spatial field
- I quant attribute per grid cell
- derived data
- isoline geometry
- isocontours computed for specific levels of scalar values

Land Information New Zealand Data Service

Idiom: isosurfaces

- data
- scalar spatial field
- I quant attribute per grid cell
- derived data
- isosurface geometry
- isocontours computed for specific levels of scalar values
- task
-spatial relationships

Idioms: DVR, multidimensional transfer functions

- direct volume rendering
-transfer function maps scalar values to color, opacity
- no derived geometry
- multidimensional transfer functions
-derived data in joint 2D histogram

- horiz axis: data values of scalar func
- vert axis: gradient magnitude (direction of fastest change)
- [more on cutting planes and histograms later]

Vector and tensor fields

- data

- many attribs per cell
- idiom families
- flow glyphs
- purely local
- geometric flow
- derived data from tracing particle trajectories
- sparse set of seed points
- texture flow
- derived data, dense seeds
- feature flow
- global computation to detect features
- encoded with one of methods above

[Comparing 2D vector field visualization methods:A user study. Laidlaw et al. IEEE Trans. Visualization and Computer Graphics (TVCG) I I:I (2005), 59-70.]

[Topology tracking for the visualization of time-dependent two-dimensional flows.Tricoche, Wischgoll, Scheuermann, and Hagen. Computers \& Graphics $26: 2$ (2002), 249-257.]

Vector fields

- empirical study tasks

- finding critical points, identifying their types
- identifying what type of critical point is at a specific location
- predicting where a particle starting at a specified point will end up (advection)

[Comparing 2D vector field visualization methods:A user study. Laidlaw et al. IEEE Trans. Visualization and Computer Graphics (TVCG) I I:I (2005), 59-70.]

Idiom: similarity-clustered streamlines

- data
- 3D vector field
- derived data (from field)
- streamlines: trajectory particle will follow
- derived data (per streamline)
- curvature, torsion, tortuosity
- signature: complex weighted combination
- compute cluster hierarchy across all signatures
- encode: color and opacity by cluster
- tasks
- find features, query shape
- scalability
- millions of samples, hundreds of streamlines

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. - Chap 8:Arrange Spatial Data
- How Maps Work: Representation,Visualization, and Design. MacEachren. Guilford Press, I995.
- Overview of visualization. Schroeder and. Martin. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 3-39. Elsevier, 2005.
- Real-Time Volume Graphics. Engel, Hadwiger, Kniss, Reza-Salama, and Weiskopf. AK Peters, 2006.
- Overview of flow visualization. Weiskopf and Erlebacher. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 26I-278. Elsevier, 2005.

Next Time

- to read
-VAD Ch. 9: Networks
- Topological Fisheye Views for Visualizing Large Graphs, Emden Gansner, Yehuda Koren and Stephen North. IEEE TVCG II (4):457-468, 2005.
- paper type: technique

[^0]: \rightarrow Many Keys
 Recursive Subdivision

