Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data

Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha
Tom Grabowski, Pierre Dragicevic
Microsoft Research-Inria Joint Centre, IBM Watson Research Centre
IRT SystemX, University of Washington

The temporal ordering of data cases is preserved.
Spatial proximity now indicates similarity.

Overview

Data: 7 versions of a Wiki article Task: explore document history

Pattern: after 4, 5, the article comes back to 3 at 6
Encoding channels: shape, colour

Outline

What

Why

How

Validation

What

General temporal data:

Wiki articles

Videos

fMRI

Data abstraction: distance matrix

```
"distancematrix": [
    [0, 0.7, 0.3],
        [0.7, 0, 0.5],
        [0.3, 0.5, 0]
],
```


Outline

Why

Motivation: patterns can be of great interest to domain experts or general audience
Task: overview and identify patterns

Wiki article on Chocolate

InfoVis

Wiki article on InfoVis

Long progress at first, edit war in the middle.
Cluster, progress, cluster...

Outline

How (method)

Timeline

Time curve
Information encoding
Rank distance: how far in time
Curvilinear distance: cumulated changes
TL TC Spatial distance: effective changes

How (implementation)

Distance matrices: number of characters inserted or deleted, Euclidean distance,... Time points positions: "classical" MDS method (not clearly defined) [46]
Curves: Bézier curve
Overlap removal: a simple iterative approach (not clearly defined)
Rotating curves : time goes from left to right

- A combination of other methods
- Sufficient for re-implementation

MDS: multipledimensional scaling
[46] Multidimensional scaling: I. Theory and method

Live demo

http://www.aviz.fr/~bbach/timecurves/

Time Curves

Outline

What

Why

How

Validation

Validation

1. Domain situation

Observe target users using existing toolsData/task abstractionVisual encoding/interaction idiom Justify design with respect to alternatives

M Algorithm

Measure system time/memory
Analyze computational complexity
Analyze results qualitatively
Measure human time with lab experiment (lab study)
Observe target users after deployment (field study)
Measure adoption

Validation (algorithm)

\# time points	time (sec)
50	9
100	20
500	500

Computational Complexity $\mathrm{O}\left(\mathrm{N}^{3}\right)$

Stability: shape is kept when adds new time points.

Validation (domain situation)

Informal user feedback
Users : one neuroscientist over two months
Task : identify/compare patterns in fMRI data
Result: encouraging feedback regarding the usability

Pattern: meaningful difference between individuals in (b)

Time curves: summary

What: Data	Time series: Wikipedia histories, videos and dynamic network		
What: Derived	Pairwise distances	Why: Tasks \quad	Reveal patterns in temporal datasets
:---:			
How: Encode			
Circles and dots:time stamp			
Curve:evolution			
Distance and colour: similarity			

What else?

Patterns and examples!

Geometric characteristics

Degree of stagnation progressing	/	5	$\approx \mathbb{B}$	stagnating	
Degree of oscillation no oscillation		\sim	N	large oscillations	Edit war in Wiki
Self-intersection no intersection		\bigcirc	$\$$	many intersections	Ineffective reversal
Point density sparse	0		10000	dense	Many small changes
Irregularity regular	\checkmark	NS	∞	irregular	Chaotic processes

Curves between two remote time points

Patterns

Cluster : minor revision
Transition: big progression
Cycle : back to previous point after a long progression
Outlier : large sudden changes

Specific combination of geometric characteristics

Surveillance video

video

Derived data
Time stamp: one frame/second
Distance : normalized absolute pixel difference

Patterns
Cluster: minor changes
Outliers: moving people

Video summarization, anomaly detection

Cloud coverage and precipitation

Patterns:
Extremes: Jan \& Aug
Dec goes to Apr

Conclusion

- A general approach for visualizing patterns of evolution in temporal data
- Demonstrated by lots of examples (solid work)
- Gives developing history of time curve method

Useful in other domains such software engineering management, law making study...

Critiques

- No direct comparison with previous work
- Validation is insufficient

Video Interpretation from [37]

Animated movie example in the paper

Thanks! Q\&A

