Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data

Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha

Tom Grabowski, Pierre Dragicevic

Microsoft Research-Inria Joint Centre, IBM Watson Research Centre

IRT SystemX, University of Washington

The temporal ordering of data cases is preserved. Spatial proximity now indicates similarity.

From TVCG 2015 Present by Jianhui (Jimmy) Chen CPSC 547 InfoVis

Overview

Data: 7 versions of a Wiki article Task: explore document history

Pattern: after 4, 5, the article comes back to 3 at 6

Encoding channels: shape, colour

Outline

What

Why

How

Validation

What

General temporal data:

Wiki articles

Videos

fMRI

Data abstraction: distance matrix

```
"distancematrix": [
    [0, 0.7, 0.3],
    [0.7, 0, 0.5],
    [0.3, 0.5, 0]
],
```

Outline

What

Why

How

Validation

Why

Motivation: patterns can be of great interest to domain experts or general audience

Task: overview and identify patterns

Wiki article on Chocolate

Long progress at first, edit war in the middle.

Wiki article on InfoVis

Cluster, progress, cluster...

Outline

What

Why

How

Validation

How (method)

Time curve

Information encodingTLTCRank distance: how far in timeYYCurvilinear distance: cumulated changesYY+Spatial distance: effective changesNY

How (implementation)

Distance matrices: number of characters inserted or deleted, Euclidean distance,... Time points positions: "classical" MDS method (not clearly defined) [46] Curves: Bézier curve Overlap removal: a simple iterative approach (not clearly defined) Rotating curves : time goes from left to right

- A combination of other methods
- Sufficient for re-implementation

MDS: multipledimensional scaling

[46] Multidimensional scaling: I. Theory and method

Live demo

http://www.aviz.fr/~bbach/timecurves/

Time Curves

Outline

What

Why

How

Validation

Validation

Domain situation Observe target users using existing tools

Data/task abstraction

Wisual encoding/interaction idiom Justify design with respect to alternatives

Algorithm

Measure system time/memory Analyze computational complexity

Analyze results qualitatively

Measure human time with lab experiment (lab study)

Observe target users after deployment (field study)

Measure adoption

Validation (algorithm)

# time points	time (sec)
50	9
100	20
500	500

Computational Complexity O(N³)

Perceptual scalability: depends on data complexity and and down-sampling method.

Stability: shape is kept when adds new time points.

Validation (domain situation)

Informal user feedback

Users : one neuroscientist over two months Task : identify/compare patterns in fMRI data Result: encouraging feedback regarding the usability

Pattern: meaningful difference between individuals in (b)

fMRI:functional magnetic resonance imaging

Time curves: summary

What: Data	Time series: Wikipedia histories, videos and dynamic network
What: Derived	Pairwise distances
Why: Tasks	Reveal patterns in temporal datasets
How: Encode	Circles and dots:time stamp Curve:evolution Distance and colour: similarity
Scale	About 100 time points

What else?

Patterns and examples!

Geometric characteristics

Curves between two remote time points

Cluster : minor revision

Transition: big progression

Cycle : back to previous point after a long progression

Outlier : large sudden changes

Specific combination of geometric characteristics

Surveillance video

Derived data

Time stamp: one frame/second

Distance : normalized absolute pixel difference Outliers: moving people

Patterns

Cluster: minor changes Outliers: moving people

Video summarization, anomaly detection

Cloud coverage and precipitation

Patterns: Extremes: Jan & Aug Dec goes to Apr

Conclusion

- A general approach for visualizing patterns of evolution in temporal data
- Demonstrated by lots of examples (solid work)
- Gives developing history of time curve method

Useful in other domains such software engineering management, law making study...

Critiques

- No direct comparison with previous work
- Validation is insufficient

Video Interpretation from [37]

Animated movie example in the paper

[37] Image Spaces and Video Trajectories: Using Isomap to Explore Video Sequences

Thanks! Q&A