

FINDING THE "MOST DISSIMILAR" PROJECTION

- Given $\mathbf{A} = \{A_0, \dots, A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

- FINDING THE "MOST DISSIMILAR" PROJECTION
- Given $A = \{A_0, ..., A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

- FINDING THE "MOST DISSIMILAR" PROJECTION
- Given $A = \{A_0, ..., A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

HOW DO WE CHOOSE $\{A_0\}$?

• Default choice: radial layout.

• Stable to alternative choices - the data patterns remain visible even if the projections change.

FINDING THE "MOST DISSIMILAR" PROJECTION

- Given $A = \{A_0, ..., A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

FINDING THE "MOST DISSIMILAR" PROJECTION

- Given $\mathbf{A} = \{A_0, ..., A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

TERMINATING THE ALGORITHM

- Terminate when d(B, A₀, ..., A_{i-1}) = 0.
- i.e. We have a complete set of linear projects up to affine transforms.
- This occurs after at most n/2 projections.

FINDING THE "MOST DISSIMILAR" PROJECTION

- Given $A = \{A_0, ..., A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

FINDING THE "MOST DISSIMILAR" PROJECTION

- Given $A = \{A_0, ..., A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

FINDING THE "MOST DISSIMILAR" PROJECTION

- Given $\mathbf{A} = \{A_0, \dots, A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

FINDING THE "MOST DISSIMILAR" PROJECTION

- Given $A = \{A_0, ..., A_{i-1}\}$ start by setting $B = A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

SUMMARY

- The algorithm produces the optimal set of *linear* projections up to affine transforms.
- Produces < n/2 independent projections.
- Relatively robust to initialisation and convergence parameters.
- Scalability could be an issue? Distance is expensive.
- Needs testing to see if the affine assumption reasonable

