Recall REDUCE task:

- In: HD Data
- Out: 2D projection

Today's paper:

- In: HD Data

Out: "optimal" set of 2D projections

- Large space of potential projections
- Would like to find a
minimal set of
"interesting" projections
to describe our dataset

HOW?

Core assumption:

Assume projections only provide insight if they're not equivalent up to an affine map.

OPTIMAL SETS OF PROJECTIONS OF HIGH-DIMENSIONAL DATA DIRK J. LEHMANN, HOLGER THEISEL.
PRESENTED BY JASON HARTFORD

HOW?

Core assumption:
Assume projections only provide insight if they're not equivalent up to an affine map.

Core assumption:

Assume projections only provide insight if they're not equivalent up to an affine map

$$
d\left(A_{1}, A_{2}\right)=0 \quad d\left(A_{1}, A_{3}\right)>0
$$

MEASURING DISSIMILARITY

FINDING THE "MOST DISSIMILAR" PROJECTION

- Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to \mathbf{A}

ALGORITHM - HIGH LEVEL

- At iteration i , given set of projections $\mathbf{A}=\left\{\mathrm{A}_{0}, \ldots, \mathrm{~A}_{\mathrm{i}-1}\right\}$
- Greedily find linear projection B that is most dissimilar from the projections in \mathbf{A}
- $\operatorname{Add} A_{i}=B$ to our set of projections
- Repeat until the best new projection gives no new
insight (equivalent up to an affine transformation)
HOW?

Core assumption:

Assume projections only provide insight if they're not equivalent up to an affine map

FINDING THE "MOST DISSIMILAR"

 PROJECTION- Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$.
- Apply gradient ascent to increase the dissimilarity
- Stop when B converges and it to A

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$ ．
－Apply gradient ascent to increase the dissimilarity
－Stop when B converges and it to \mathbf{A}

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$ ．
－Apply gradient ascent to increase the dissimilarity
－Stop when \mathbf{B} converges and it to \mathbf{A}

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$ ．
－Apply gradient ascent to increase the dissimilarity
－Stop when B converges and it to \mathbf{A}

HOW DO WE CHOOSE $\left\{A_{0}\right\}$ ？
－Default choice：radial layout
－Stable to alternative choices－the data patterns remain visible even if the projections change．

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$
－Apply gradient ascent to increase the dissimilarity
－Stop when B converges and it to \mathbf{A}

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$ ．
－Apply gradient ascent to increase the dissimilarity
－Stop when B converges and it to \mathbf{A}

TERMINATING THE ALGORITHM
－Terminate when $d\left(B, A_{0}, \ldots, A_{i-1}\right)=0$ ．
－i．e．We have a complete set of linear projects up to affine transforms．
－This occurs after at most $\mathrm{n} / 2$ projections．

	量	曻多	裳：	
		縖	I	
				x
		$\begin{gathered} \text { 等 } \\ \hline \end{gathered}$		

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$ ．
－Apply gradient ascent to increase the dissimilarity
－Stop when B converges and it to A

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$ ．
－Apply gradient ascent to increase the dissimilarity
－Stop when B converges and it to \mathbf{A}

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $A=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$ ．
－Apply gradient ascent to increase the dissimilarity
－Stop when B converges and it to \mathbf{A}

FINDING THE＂MOST DISSIMILAR＂ PROJECTION
－Given $\mathbf{A}=\left\{A_{0}, \ldots, A_{i-1}\right\}$ start by setting $B=A_{i-1}$ ．
－Apply gradient ascent to increase the dissimilarity
－Stop when B converges and it to \mathbf{A}

			$\frac{\text { Dissimilarity d }}{50}$

SUMMARY

－The algorithm produces the optimal set of linear projections up to affine transforms．
－Produces $<\mathrm{n} / 2$ independent projections．
－Relatively robust to initialisation and convergence parameters．
－Scalability could be an issue？Distance is expensive．
－Needs testing to see if the affine assumption reasonable

