

HOLA Design Principles

- P1 : Use force-directed approach first to untangle network
 - Compactness (R3)
 - Symmetry (R5)
 - Minimize edge crossing (R6) Edge length regularity (R8,R9)
- P2 : Apply incremental improvements like a human would Tune bend points (R2)
 - Enforce gridiness (R4)
- P3 : Treat acyclic subcomponents (trees) independently
 - Enforce placement of trees outside of cycles (R1) Encourages symmetry of subcomponents (R5)

Evaluation of Algorithm -Large Networks

- Preference-based evaluation:
 - Users preferred HOLA result for all pairs except (c), for which there was no significant difference
- Performance-based evaluation: participants were asked
- to complete two tasks: Find the path between two nodes
 - 2. Find the neighbors of a node

	 	F	 -		

		Mean Error HOLA	Mean Error yFiles	Mean Speed HOLA	Mean Speed yFiles	
	Shortest Path	0.162	0.548	12.27s	29.15s	
	Neighbours	0.159	0.349	10.10s	12.98s	

Reference

S. Kieffer, T. Dwyer, K. Marriot, and M. Wybrow. HOLA: Human-like Orthogonal Network Layout. IEEE Transactions on Visualization and Computer Graphics, 22(1):349-58, 2015,

HOLA Steps

- 1. Decompose layout into "core" and subtrees
- 2. Layout the core
- 3. Layout and place the subtrees
- 4. Fine tune

Evaluation of Algorithm -Large Networks

Synthesis

- What it a success? All in all, Yes!
- They made a couple new discoveries about what people like in network layouts and validated old discoveries
- They developed an automatic orthogonal layout algorithm that is competitive with human-made layouts
 - More nuanced that TSM or force-directed approaches alone · Nicely balances characteristics people value in networks
- · They established a framework for others to follow
- They did an excellent job relating the various sections to each other (e.g. the Rs and Ps)

 $\bar{p}_1 = 0.69$, $\bar{p}_2 = 0.52$

Criticisms

Evaluation of Algorithm -

Small Networks

2, 3, 4, 5, 6

· Participants ranked the following for each of the eight

networks from the original user study:

HOLA output

Criticisms Algorithm: No empirical support provided for relationships between design principles (the Ps) and aesthetic values (the Rs) Evaluation: · No comparison of outputs by metric (compactness, etc.) · Would be nice to see metrics for outputs at each stage of the

- algorithm can we change the order of tasks and get better results?
- · No pairwise comparisons of task performance on large networks
- What about networks with non-uniform distance between nodes?

36