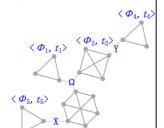
EgoNetCloud: Event-based Egocentric Dynamic Network Visualization

Qingsong Liu, Yifan Hu, Lei Shi, Xinzhu Mu, Yutao Zhang, Jie Tang IEEE VIS 2015

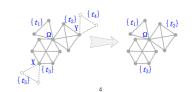
Presented by: Dylan

Context Event-based Egocentric Dynamic Network


time-varying graph

Context

Event-based Egocentric Dynamic Network


- in event-based network, discrete time point (continuous time period) of the edge is associated with an event
- every dynamic network can be seen as event-based
- establishing a friendship tie in online social networks sending a mobile short message

Context

Event-based Egocentric Dynamic Network

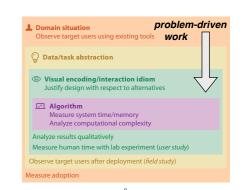
- subgraph of the full-scale graph
- node: ego node vs. alter node
- edge: ego -> alter; alter -> alter
- help understand the role of the ego in full-scale network

Problems

- visual clutter
- edge crossing

 Debuguahn Wgr
 iniation broken

 Spring To Spr

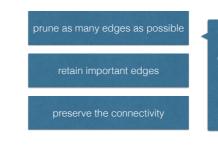

Goals

- · reveal egocentric network structure
- reveal the temporal dynamics of the ego/ alter nodes
- requirements on performance, visual metaphor, layout constraint
- redesign interaction

Contributions

- Data-driven empirical algorithms: prune, compress and filter networks into smaller but more informative abstractions
- EgoNetCloud visual metaphor and interactions: display and explore both the egocentric network structure and their temporal dynamics
- Fast and constrained layout computation: fulfill requirement of the new visual metaphor and maintain fine readability
- Comprehensive evaluations: demonstrate the effectiveness of the EgoNetCloud design through a user study and a realworld case study

Levels of Design


Framework

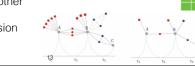
System	EgoNetCloud
What: Data	Event-based egocentric dynamic network data
Why: Tasks	Identify clusters, values, trends
How: Encode	Nodes linked with connections; size; category colors;
How: Reduce	Edge pruning; node compression; graph filtering
How: Manipulate	Select
How: Facet	NetCloud; EgoCloud; Static Ego Network

How

Edge Pruning

· remove low-weight edges

• authors not listed in alphabetical order


sparse matrix

 $M = \begin{pmatrix} 1/3 & 1/3 & 0 & 1/3 & 0 \\ 1/3 & 1/3 & 0 & 0 & 1/3 \\ 1/4 & 1/4 & 1/4 & 0 & 1/4 \end{pmatrix}$

- · cosine similarity as weight
- · recency based scaling: inverse of paper's age
- · author ordering based scaling
- authors listed in alphabetical order
- credit allocation algorithm
 [Shen, H. W., & Barabási, A. L. (2014). Collective credit allocation in science
 Proceedings of the National Academy of Sciences, 111(34), 12325-12330.]

Node Compression

- group nodes with the same or similar connection pattern
- graph adjacency matrix
- merge nodes with exactly the same connectivity
- merge nodes with the same connectivity and linked to each other
- fuzzy compression

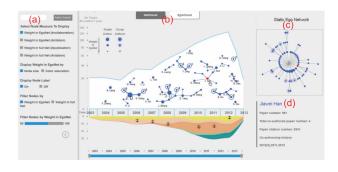
Graph Filtering

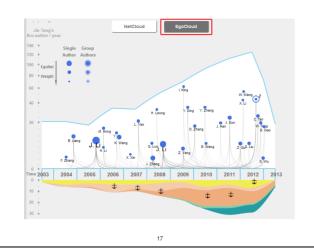
reduce nodes and related edges by rule-based policy

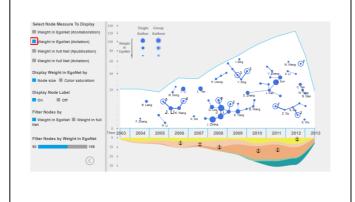
importance degree

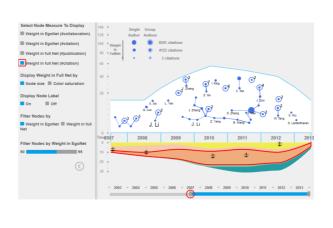
time period

- # citations
- # collaborations
- # publications

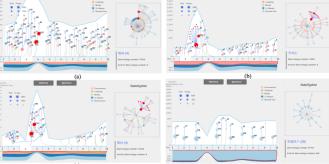


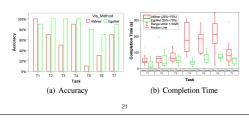

Layout Algorithm


graph


- initial layout
- · alter's interaction time & frequency with ego
- · constrained stress majorization approach
- · deal with position constraints

EgoNetCloud





User Study

- temporal information related
- the egocentric network related
- a combination of the two

Critique

- suspicious about result of weighted graphs
- nodes compression algorithm for unweighted graphs
- "no edge in the complement of the simplified subgraph has weight greater than any of the edges in this subgraph"

 | The complement of the simplified subgraph is the edges of the complement of the simplified subgraph is the edges of the complement of the simplified subgraph is the edges of the complement of the simplified subgraph is the edges of the
- efficiency should be 1
- can't see the particular benefit apply to other networks

Questions