Ch 10: Color Papers: Colors as Three Numbers

Tamara Munzner

Department of Computer Science University of British Columbia

CPSC 547, Information Visualization **Day 10: 13 October 2015**

http://www.cs.ubc.ca/~tmm/courses/547-15

Colors as Three Numbers

- trichromacy
 - -different cone responses: area function of wavelength
 - -for a given spectrum
 - multiply by response curve
 - integrate to get response

[Representing Colors as Three Numbers, Stone, IEEE Computer Graphics and Applications, 25(4), July 2005, pp. 78-85]

Metamerism

• brain sees only cone response -different spectra appear the same

[Representing Colors as Three Numbers, Stone, IEEE Computer Graphics and Applications, 25(4), July 2005, pp. 78-85]

Color Matching Experiments

[<u>Representing Colors as Three Numbers</u>, Stone, IEEE Computer Graphics and Applications, 25(4), July 2005, pp. 78-85]

Color Matching Functions

[Representing Colors as Three Numbers, Stone, IEEE Computer Graphics and Applications, 25(4), July 2005, pp. 78-85]

Spectral Sensitivity

Color Spaces

- RGB: convenient for machines
 these three channels *not* separable
- CIE XYZ: from color matching functions

 perceptually based
- L*a*b*: from XYZ + reference whitepoint
 perceptually linear, so safe to interpolate
- HLS: simple transformation of RGB
 - -good: separates out lightness from hue and saturation
 - -bad: lightness not true luminance
 - -careful: only pseudo-perceptual

7

Color: Luminance, saturation, hue

- 3 channels Luminance -identity for categorical Saturation • hue - magnitude for ordered Hue Iuminance saturation other common color spaces -RGB: poor choice for visual encoding
 - HSL: better, but beware
 - ISL: Deller, but beware
 - lightness ≠ luminance
- transparency
 - -useful for creating visual layers
 - but cannot combine with luminance or saturation

Corners of the RGB color cube

L from HLS All the same

Luminance values

Colormaps

- 3-4 bins luminance, saturation
- size heavily affects salience
 - use high saturation for small regions, low saturation for large

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Categorical color: Discriminability constraints

noncontiguous small regions of color: only 6-12 bins

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

Ordered color: Rainbow is poor default

problems

- perceptually unordered
- perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - fewer hues for large-scale structure
 - multiple hues with monotonically increasing luminance for fine-grained
 - segmented rainbows good for categorical, ok for binned

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/lloydt/color/color.HTM]

[A Rule-based Tool for Assisting Colormap Selection. Bergman, Rogowitz, and Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

Map other channels

•	→ Size, A
• size	→ Len
–length accurate, 2D area ok, 3D volume poor	→ Ang
• angle	
– nonlinear accuracy	→ Area
 horizontal, vertical, exact diagonal 	→ Cur
• shape	→ Volu
 – complex combination of lower-level primitives 	
–many bins	→ Shape
• motion	+ (
–highly separable against static	Motic
 binary: great for highlighting 	→ Mot
-use with care to avoid irritation	Direo Freq

Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. - Chap 10: Map Color and Other Channels
- ColorBrewer, Brewer.
 - -http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006. <u>http://www.stonesc.com/Vis06</u>
- A Field Guide to Digital Color. Stone. AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14–17.
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004.

Next Time

- to read
 - -VAD Ch. II: Manipulate View
 - -<u>Interactive Visualization of Genealogical Graphs</u>. Michael J. McGuffin, Ravin Balakrishnan. Proc. InfoVis 2005, pp 17-24.