News
Ch 15: Analysis Case Studies Paper: Algebraic

Tamara Munzner
Department of Computer Science University of British Columbia
CPSC 547 Information Visuliaration
Lecture Is: If
http://www.cs.ubc.ca//tmm/courses/547-15

Scagnostics analysis

System	Scagnostics
What: Data	Table.
What: Derived	Nine quantitative attributes per scatterplot (pairwise combination of original attributes),
Why: Tasks	Identify, compare, and summarize; distributions and correlation.
How: Encode	Scatterplot, scatterplot matrix.
How: Manipulate	Select.
How: Facet	Juxtaposed small-multiple views coordinated with linked highlighting, popup detail view.
Scale	Original attributes: dozens.

VisDB Analysi

System	VISDB
What D	Trail darabasel wit k
: Den	$k+1$ quantitative attributes per original item: query relevance for the k original attributes plus
Why: Tasts	Characterize distribution within attribute, find groups of similar values within attribute, find outliers within attribute, find correlation be-
How: Enode	Dense, space-filling; area marks in spiral layout; colormap: categorical hues and ordered
How: Faces	patribute views, small multiples. Layout 2: partition by items into per-item glyphs.
How: Reduce	Fillering
Scale	Attributes: Visible items (using multiple views, in to- lion. tal): one million. Visible items (using glyphs):

- presentation topics/papers/dates posted

VisDB

VisDB

- table: draw pixels sorted, colored by relevanc xtaposed small-multiple views coordinated Original a atributues: dozens.
- group by attribute or partition by attribute into multiple view

Hierarchical Clustering Explorer

- heatmap, dendrogram
- multiple views

[Interactively Exploring Hierarchical Clustering Results. Seo and Shneiderman, IEEE Computer 35(7):
80 :-86 (2002)]
InterRing

Analysis Case Studies

Trank-by-feature framework for interactive exploration of multidimensional data. Seo and Shneiderman. InterRing Analysis

Graph-Theoretic Scagnostics

dagnostics

stas \square

VisDB Results

- partition into small number of views -inspect each attribute

VVisDB: Database Exploration using Multidimensional Visulization, Keim and Kriegel, IEEE CG\&A, 1994] • HCE

A rank-by-feature framework for interatitie exploration of multidimensional data. Seo and Shneiderman.

PivotGraph

- derived rollup network

	PivotGraph Analysis	Analysis example: Constellation - data -multi-level network - node: word - link: words used in same dictionary definition - subgraph for each definition -not just hierarchical clustering -paths through network - query for high-weight paths between 2 nodes -quant attrib: plausibility [Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.] [Constellation:A Visualization Tool For Linguistic Queries from MindNet. Munzner, Guimbretière and Robertson. Proc. IEEE Symp. InfoVis 999 , p.132-135.]	Using space: Constellation - visual encoding - link connection marks between words - link containment marks to indicate subgraphs - encode plausibility with horiz spatial position - encode source/sink for query with vert spatial position - spatial layout - curvilinear grid: more room for longer low-plausibility paths
Using space: Constellation - edge crossings -cannot easily minimize instances, since position constrained by spatial encoding - instead: minimize perceptual impact - views: superimposed layers - dynamic foreground/background layers on mouseover, using color - four kinds of constellations - definition, path, link type, word - not just I-hop neighbors	Constellation Analysis	What-Why-How Analysis - expected in your paper/topic presentations -in addition to content summarization and general reflection - expected in your final projects - this approach is not the only way to analyze visualizations! - one specific framework intended to help you think -other frameworks support different ways of thinking -today's paper is interesting example!	Algebraic Process for Visualization Design - which mathematical structures in data are preserved and reflected in vis -negation, permutation, symmetry, invariance [Fig I.An Algebraic Process for Visualization Design. Carlos Scheidegger and Gordon Kindlmann. IEEE TVCG (Proc. InfoVis 2014), 20(12):2181-2190.]
Algebraic process:Vocabulary - invariance violation: single dataset, many visualizations - hallucinator - unambiguity violation: many datasets, same vis -data change invisible to viewer - confuser - correspondence violation: - can't see change of data in vis - jumbler - salient change in vis not due to significant change in data -misleader -match mathematical structure in data with visual perception - we can X the data; can we Y the image? -are important data changes well-matched with obvious visual changes:	Algebraic process: Model - D: space of data to be visualized - R: space of data representations $-r$: mapping from D to R - V : space of visualizations -v : mapping from R to V - α : data symmetries - ω :visualization symmetries - commutative diagram $v \circ r_{2} \circ \alpha=\omega \circ v \circ r_{1}$ $D \xrightarrow{\downarrow}{ }^{r_{1}} R \xrightarrow{v} V{ }^{r_{2}} R \xrightarrow{v}{ }_{V}^{\downarrow} \omega$	Algebraic process: Previous work tie-in - Stevens data types: categorical, ordinal, quant (interval \& ratio) - defined by symmetry groups and invariances - Ziemziewicz \& Kosara surjective/injective/bijective - injectivity unambiguity - Mackinlay's Expressiveness Principle - convey all and only properties of data - invariancelhallucinator, correspondence/misteader - Mackinlay's Effectiveness Principle - match important data a atributes to salient visual channels - correspondencefiumbler, unambiguiry/confuser - Gibson/Ware affordances -perceivable structures show possibility of action - correspondence	Algebraic process: Previous work tie-in, cont. - Tversky Congruence Principle \& Apprehension Principle - congruence: visual external structure of graphic should correspond to mental internal representation of viewer -apprehension: graphics should be readily and easily perceived and comprehended - unambiguity and correspondence - nested model -reason about mappings from abstraction to idiom -mathematical guidelines for abstraction layer

-are important data changes well-matched with obvious visual changes?

Next Time

- presentations continue
- no further assigned readings for everybody
- presentations
-4 per class, 20 minutes each total -plan on $15-17$ min present, $3-5$ minute questions
- plan on $15-17$ min
- update presentations due Mon Nov 23
-typo on web page - not Mon Nov 14
new this year: full draft of previous work section of final report
-bulk of your mark will be on whats in the update
- goal: do this up front not at the end

