CPSC 314, Midterm Exam

31 May 2005

Closed book, one single-sided sheet of handwritten notes allowed. Answer the questions in the space provided. If you run out of room for an answer, continue on the back.

Name: _____

Student Number: _____

Question	Points Earned	Points Possible
1		24
2		4
3		8
4		12
5		10
6		13
7		13
8		2
9		4
10		10
Total		100

1. (24 pts) Using the matrices

$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{D} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Sketch a picture of the six houses h1 = A h, h2 = A B h, h3 = A B C h, h4 = A B C D h, h5 = A B D h, and h6 = B A h in the six grids below that show h. Make sure to label each grid with the name of the house.

			/					
		4	4					
		3	\checkmark	\setminus				
		2						
		1				-	x	
		0	1	2	3	4		

			/					
		4	4					
		3	\checkmark	$\overline{\ }$				
		2						
		1				-	х	
		0	1	2	3	4		
			4, 3 2 1 1	44 3 2 1 1 0 1				

			y					
		4	1					
		3		\geq				
		2						
		1					х	
		0	1	2	3	4		

			/					
		4	4					
		3		$\overline{)}$				
		2						
		1				-	х	
		0	1	2	3	4		

		1	/					
		4/						
		3		$\overline{\ }$				
		2						
		1					x	
		0	1	2	3	4		
		0	1	2	3	4		
		0	1	2	3	4		
		0	1	2	3	4		
		0	1	2	3	4		

			/					
		4/	4					
		3		\smallsetminus				
		2						
		1				-	x	
		0	1	2	3	4		

2. (4 pts) Give sequence of OpenGL commands necessary to implement h5 = A B D h. You can draw a house with the drawHouse() command.

3. (8 pts) Draw houseP and houseQ transformed by the appropriate OpenGL commands. The untransformed house is below.

```
glIdentity();
glTranslate(-3, -2, 0);
glScale(2, 1, 1);
glPushMatrix();
glRotate(-90, 0, 0, 1);
drawHouseP();
glPopMatrix();
drawHouseQ();
```

44 3 2 1 0 1 2	3 4 ×	44 3 2 1 0 1	

4. (12 pts) If p' = ABp, give the 4x4 matrices A and B needed to create the picture below, assuming the house started from the initial position as shown in the above questions.

		1	/					
		4/	1					
		3						
		2						
					12	7	x	
 		- 0	H	\overline{n}	3	4		
_					\rightarrow	_		-
 _	-				Y			
_								

5. (10 pts) Specify the coordinates of point P with respect to coordinate frames A and B.

	Ai	 		
	Âj		bj	-
	_	Bi		Ρ
jĻ				

6. (13 pts) True/false

- Display lists can be nested hierarchically.
- The homogeneous points (1,2,3,4) and (1,4,8,16) map to the same Cartesian point after homogenization.
- The homogeneous points (2,2,2,4) and (4,4,4,4) map to the same Cartesian point after homogenization.
- Nonuniform scaling is in the class of affine transformations but is not a linear transformation.
- A normal vector to a surface transformed by a nonuniform scale is still perpendicular to that surface.
- Moving the camera 4 units forward in z is indistinguishable from moving the world 4 units backward in z.
- An asymmetric viewing frustum has a center of projection at infinity.
- An orthographic projection has a center of projection at infinity.
- Perspective division happens after the modelview transformation and before the projection transformation.
- After perspective division, all points have been projected onto the image plane.
- gluLookAt can be expressed as a combination of translations, scales, and rotations.
- Perspective transformations are in the class of affine transformations.
- Cavalier projections have three vanishing points.

7. (13 pts) Derive the rotation matrix for rotating around the x axis. Your derivation should include a figure, a set of equations, and the final matrix itself. Show all steps.

Use this code to answer the following questions

```
<coordinate system L>
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-5,5,-5,5,2,10)
<coordinate system M>
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate(0,0,-5);
<coordinate system N>
glVertex(-1,-1,1);
```

8. (2 pts) If N is the world coordinate system, then name the coordinate systems L and M.

9. (4 pts) Compute the location of the vertex in the M coordinate system.

10. (10 pts) Compute the location of the vertex in the L coordinate system.