CPSC 314, Midterm Exam

31 May 2005
Closed book, one single-sided sheet of handwritten notes allowed. Answer the questions in the space provided. If you run out of room for an answer, continue on the back.

Name: \qquad

Student Number: \qquad

Question	Points Earned	Points Possible
1		24
2		4
3		8
4		12
5		10
6		13
7		13
8		2
9		4
10		10
Total		

1. (24 pts) Using the matrices

$$
\mathbf{A}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \mathbf{B}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \mathbf{C}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{D}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Sketch a picture of the six houses $\mathrm{h} 1=\mathbf{A} \mathrm{h}, \mathrm{h} 2=\mathbf{A B h}, \mathrm{h} 3=\mathbf{A B C h}, \mathrm{h} 4=\mathbf{A} \mathbf{B} \mathbf{C D} \mathrm{h}, \mathrm{h} 5=\mathbf{A} \mathbf{B} \mathbf{D} \mathrm{h}$, and $\mathrm{h} 6=\mathbf{B} \mathbf{A h}$ in the six grids below that show h. Make sure to label each grid with the name of the house.

					\mathbf{y}						
					$\mathbf{4}$	\mathbf{l}					
					$\mathbf{3}$	\mathbf{A}					
					$\mathbf{2}$						
					$\mathbf{1}$		\square			\mathbf{x}	
					$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		

2. (4 pts) Give sequence of OpenGL commands necessary to implement $\mathrm{h} 5=\mathbf{A} \mathbf{B} \mathbf{D} \mathrm{h}$. You can draw a house with the drawHouse() command.
3. (8 pts) Draw houseP and houseQ transformed by the appropriate OpenGL commands. The untransformed house is below.

```
glIdentity();
glTranslate(-3, -2, 0);
glScale(2, 1, 1);
glPushMatrix();
glRotate(-90, 0, 0, 1);
drawHouseP();
glPopMatrix();
drawHouseQ();
```

					y	y												y					
					4													4					
						\square													,				
					2																		
					1					X								1	\square			x	
						1	12	3	34										12	23	34		

4. (12 pts) If $\mathrm{p}^{\prime}=\mathrm{ABp}$, give the the $4 x 4$ matrices A and B needed to create the picture below, assuming the house started from the initial position as shown in the above questions.

5. (10 pts) Specify the coordinates of point P with respect to coordinate frames A and B.

6. (13 pts) True/false

- Display lists can be nested hierarchically.
- The homogeneous points $(1,2,3,4)$ and $(1,4,8,16)$ map to the same Cartesian point after homogenization.
- The homogeneous points $(2,2,2,4)$ and $(4,4,4,4)$ map to the same Cartesian point after homogenization.
- Nonuniform scaling is in the class of affine transformations but is not a linear transformation.
- A normal vector to a surface transformed by a nonuniform scale is still perpendicular to that surface.
- Moving the camera 4 units forward in z is indistinguishable from moving the world 4 units backward in z .
- An asymmetric viewing frustum has a center of projection at infinity.
- An orthographic projection has a center of projection at infinity.
- Perspective division happens after the modelview transformation and before the projection transformation.
- After perspective division, all points have been projected onto the image plane.
- gluLookAt can be expressed as a combination of translations, scales, and rotations.
- Perspective transformations are in the class of affine transformations.
- Cavalier projections have three vanishing points.

7. (13 pts) Derive the rotation matrix for rotating around the x axis. Your derivation should include a figure, a set of equations, and the final matrix itself. Show all steps.

Use this code to answer the following questions

```
<coordinate system L>
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-5,5,-5,5,2,10)
<coordinate system M>
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate(0,0,-5);
<coordinate system N>
glVertex(-1,-1,1);
```

8. (2 pts) If N is the world coordinate system, then name the coordinate systems L and M .
9. (4 pts) Compute the location of the vertex in the M coordinate system.
10. (10 pts) Compute the location of the vertex in the L coordinate system.
