University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Textures |l

Week 9, Fri Mar 16
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Reading for Last Time and Today

- FCG Chap 11 Texture Mapping
- except 11.8

- RB Chap Texture Mapping
- FCG Sect 16.6 Procedural Techniques
- FCG Sect 16.7 Groups of Objects

Corrected Correction: HSI/HSV and RGB
« HSV/HSI conversion from RGB

* hue same in both
 value is makx, intensity is average

Hr-6)+(-B)]
H =cos™ 2
J(R-G)* +(R-B)G-B)
. S=1_min(R,G,B) 7 R+G+B

I 3

‘Hsv: § =1 MNRG.B) v - max(R,G,B)
V 3

News

« H3 Q2: OK to use either HSV or HSI

News

* Project 3 grading slot signup
* Mon 11-12
* Tue 10-12:30, 4-6
- Wed 11-12, 2:30-4

Review: Back-face Culling

VCS

NDCS

b/
eye A\ works to cullif N, >0

Review: Invisible Primitives

* why might a polygon be invisible?
 polygon outside the field of view / frustum
» solved by clipping
 polygon is backfacing
* solved by backface culling

 polygon is occluded by object(s) nearer the viewpoint
* solved by hidden surface removal

Review: Texture Coordinates

* texture image: 2D array of color values (texels)
 assigning texture coordinates (s,t) at vertex with
object coordinates (x,y,z,w)
* use interpolated (s,t) for texel lookup at each pixel

* use value to modify a polygon’s color
« or other surface property

 specified by programmer or artist giTexCoord2f (s,t)
iy glVertexf (x,y,z,w)

Review: Tiled Texture Map

=

(0,0) Object ,1) Mapped Texture

glTexCoord2d(1, 1);

glVertex3d (x, vy, z); T

Texture

glTexCoord2d(4, 4);
glVertex3d (x, vy, z);

Tex

(0,4) Mapped Texture

Review: Fractional Texture Coordinates

texture
image

\
(0,0) (1,0) (0,0) (-25,0)

10

Review: Texture

 action when s or t is outside [0...1] interval
* tiling
* clamping

» functions
* replace/decal

 modulate
* blend

* texture matrix stack
glMatrixMode (GL TEXTURE) ;

11

Texturing Il

12

Texture Pipeline

(x, Y, z)
Object position
(-2.3,7.1,17.7)
(s, t) (s’, t)
Texel space Texel color
Parameter space —> Transformed —— (81, 74) — (0.9,0.8,0.7)
(0.32, 0.29) parameter space ’ bt hd

(0.52, 0.49)

Object color
(0.5,0.5,0.5)

» Final color
(0.45,0.4,0.35)

13

Texture Objects and Binding

* texture object

* an OpenGL data type that keeps textures resident in memory
and provides identifiers to easily access them

 provides efficiency gains over having to repeatedly load and
reload a texture

* you can prioritize textures to keep in memory

* OpenGL uses least recently used (LRU) if no priority is
assigned

* texture binding
* which texture to use right now
« switch between preloaded textures

14

Basic OpenGL Texturing

create a texture object and fill it with texture data:
- glGenTextures (num, &indices) to getidentifiers for the objects
- glBindTexture (GL TEXTURE 2D, identifier) to bind
- following texture commands refer to the bound texture

* glTexParameteri (GL TEXTURE 2D, .., ..) tospecify
parameters for use when applying the texture
* glTexImage2D (GL TEXTURE 2D, ...) to specify the texture data

(the image itself)
enable texturing: glEnable (GL TEXTURE 2D)

state how the texture will be used:
e glTexEnvft (..)
specify texture coordinates for the polygon:

* use glTexCoord2f (s, t) before each vertex:
e glTexCoord2f (0,0),; glVertex3f(x,v,z);

15

Low-Level Details

* large range of functions for controlling layout of texture data

- state how the data in your image is arranged

° e.0..glbPixelStorei (GL UNPACK ALIGNMENT, 1) tells
OpenGL not to skip bytes at the end of a row

* you must state how you want the texture to be put in memory:
how many bits per “pixel”, which channels,...

+ textures must be square and size a power of 2
* common sizes are 32x32, 64x64, 256x256

- smaller uses less memory, and there is a finite amount of
texture memory on graphics cards

« ok to use texture template sample code for project 4
* http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

16

Texture Mapping

* texture coordinates

 specified at vertices
glTexCoord2f (s, t) ;

glVertexf (x,y,2z) ;

* interpolated across triangle (like R,G,B,Z)
- ...well not quite!

17

Texture Mapping

* texture coordinate interpolation
* perspective foreshortening problem

18

Interpolation: Screen vs. World Space

* screen space interpolation incorrect

 problem ignored with shading, but artifacts
more visible with texturing | Po(x.y.2) |

19

Texture Coordinate Interpolation

» perspective correct interpolation
o, B,y
* barycentric coordinates of a point P in a triangle
* S0, s1,s2:
* texture coordinates of vertices
« w0, wi,w2:

* homogeneous coordinates of vertices

(s1,t1)
(x1,y1,z1,w1)

(s2,t2) (f(

(x2,y2,z2,w2) (s0,t0)
(x0,y0,z0,w0)

oSy /wy s /wty s, /w,

o/ w,+p/w +y/w,

20

Reconstruction

* how to deal with:

* pixels that are much larger than texels?

- apply filtering, “averaging”

* pixels that are much smaller t
* Interpolate

han texels ?

21

MIPmapping

use “image pyramid” to precompute
averaged versions of the texture

Without MIP-mapping

store whole pyramid in By
single block of memory

With MIP-mapping’

MIPmaps

multum in parvo -- many things in a small place

- prespecify a series of prefiltered texture maps of decreasing
resolutions

* requires more texture storage

 avoid shimmering and flashing as objects move
gluBuildZ2DMipmaps

« automatically constructs a family of textures from original
texture size down to 1x1

without

23

MIPmap storage

» only 1/3 more space required

24

Texture Parameters

* In addition to color can control other
material/object properties

» surface normal (bump mapping)
* reflected color (environment mapping)

25

Bump Mapping: Normals As Texture

* object surface often not smooth — to recreate correctly
need complex geometry model

 can control shape “effect” by locally perturbing surface
normal

* random perturbation
- directional change over region

Bump Mapping

bt ow

Original surface

B(u)

| W A bump map

Bump Mapping

0'(u)

Lengthening or shortening
(ONu) using B(u)

N'(u)

The vectors to the

o

‘new’ surface

Embossing

 at transitions
» rotate point’s surface normal by _or- _

29

Displacement Mapping
* bump mapping gets 5\&
silhouettes wrong

» shadows wrong too

* change surface
geometry instead
* only recently

available with
realtime graphics

* need to subdivide
surface

Environment Mapping

* cheap way to achieve reflective effect
* generate image of surrounding
* map to object as texture

31

Environment Mapping

* used to model object that reflects
surrounding textures to the eye

* movie example: cyborg in Terminator 2
+ different approaches

* sphere, cube most popular
* OpenGL support

- GL_SPHERE MAP, GL CUBE MAP

 others possible too

32

Sphere Mapping

* texture is distorted fish-eye view
* point camera at mirrored sphere

« spherical texture mapping creates texture coordinates that
correctly index into this texture map

Cube Mapping

* 6 planar textures, sides of cube

* point camera in 6 different directions, facing
out from origin

Cube Mapping

35

Cube Mapping

* direction of reflection vector r selects the face of the
cube to be indexed

» co-ordinate with largest magnitude
* e.g., the vector (-0.2, 0.5, -0.84) selects the —Z face

 remaining two coordinates (normalized by the 3™
coordinate) selects the pixel from the face.

* e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

« difficulty in interpolating across faces

36

Volumetric Texture

 define texture pattern over 3D
domain - 3D space containing
the object

* texture function can be
digitized or procedural

- for each point on object
compute texture from point
location in space

« common for natural
material/irregular textures
(stone, wood,etc...)

Marble

Volumetric Texture Principles

3D function p(x,y,z)

texture space — 3D space that holds the
texture (discrete or continuous)

rendering: for each rendered point P(x,y,z)
compute p(x,y,z)

volumetric texture mapping function/space
transformed with objects

39

Procedural Textures

* generate “image” on the fly, instead of
loading from disk

* often saves space
- allows arbitrary level of detall

40

Procedural Texture Effects: Bombing

* randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
« for point P search table and determine if inside shape
* if so, color by shape
- otherwise, color by objects color

41

Procedural Texture Effects

* simple marble

function boring marble (point)
X = polint.x;
return marble color(sin(x));
// marble color maps scalars to colors

42

Perlin Noise: Procedural Textures

» several good explanations
* FCG Section 10.1

» http://www.noisemachine.com/talk1
* http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
* http://www.robo-murito.net/code/perlin-noise-math-faq.htmi

http://mrl.nyu.edu/~perlin/planet/

43

: Coherency

Perlin Noise

* smooth not abrupt changes

white noise

coherent

DLW
.

B
<h

44

Perlin Noise: Turbulence

Sum of Moise Functions = (Perlin Noise)

* multiple feature sizes
» add scaled copies of noise

Amplitude - 128 Amplitude - 64 Amplitude - 32
frequency © 4 frequency : & frequency : 16

ST

Amplitude - 16 Amplitude - 8 Amplitude - 4
frequency : 32 frequency : B4 frequency @ 128

& Fas g I
Mfw/jm e H\ N e T o AT

Perlin Noise: Turbulence

* multiple feature sizes
» add scaled copies of noise

46

Perlin Noise: Turbulence

* multiple feature sizes
» add scaled copies of noise

function turbulence (p)
t = 0, scale = 1;
while (scale > pixelsize) {

t +=
abs (Noise (p/scale) *scale) ;

scale/=2;

} return t;

47

Generating Coherent Noise

* just three main ideas
* nice Interpolation
* use vector offsets to make grid irregular
* optimization
 sneaky use of 1D arrays instead of 2D/3D one

48

Interpolating Textures

* nearest neighbor
* bilinear
* hermite

49

Vector Offsets From Grid

» weighted average of gradients

 random unit vectors gix1,y1)
(=0, y1) 1, v1
: b m
0 gix1,¥0) !
(=0, v0O; (1, wi) 0

gi=0,v0)

Optimization

* save memory and time

« conceptually:
- 2D or 3D grid
« populate with random number generator

 actually:

« precompute two 1D arrays of size n (typical size 256)
* random unit vectors
 permutation of integers 0 to n-1

* lookup
* g(i,j,k)=G[(i+ P[(j+ P[k]) modn]) modn]

51

Perlin Marble

* use turbulence, which in turn uses noise:
function marble (point)

X = polnt.x + turbulence (point)

return marble color (sin(x))

52

Procedural Approaches

53

Procedural Modeling

* textures, geometry
* nonprocedural: explicitly stored in memory

* procedural approach
» compute something on the fly
- often less memory cost
* visual richness

* fractals, particle systems, noise

54

Fractal Landscapes

* fractals: not just for “showing math”
* triangle subdivision
* vertex displacement
* recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

55

Self-Similarity

* infinite nesting of structure on all scales

2 Ard 8t 2 ard Aerd

o e R P £ R 2 P i E R R P e

i i
Tttt Pridveas
i P
i P
Eﬁmﬂﬁﬁmﬁﬁﬁﬁéﬁéﬁéﬁé AT T E f T L L E A L P p SR

o A Pt ot Pl ol ot Al Pt ard A A Pl 8 ot T R A ot 3 ot A ot Pl Dt ol oot Atd Pt o A A

56

Fractal Dimension

* D =log(N)/log(r)
N = measure, r = subdivision scale
» Hausdorff dimension: noninteger

Koch snowflake

Initiator

. . . Length=1
coastline of Britain
;
7
i Generator
ot .
Ciramina ey Length=4/3
B B e e b v Lo b y/\u
i i
Vb R Level 2
: SN et A Length=16/9
E i EmsE
EE@%@@@@%@E%‘%E%E R A e
Level 3
LEﬂgth=E‘iI2'i'|

= log(N)/log(r) D = log(4)/log(3) = 1.26
http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html 57

Language-Based Generation

» L-Systems: after Lindenmayer 2\

- Koch snowflake: F :- FLFRRFLF
 F: forward, R: right, L: left

Length=16/9

} ;
E. 1]

Level 3
Length=64/727

 Mariano’s Bush:
F=FF-[-F+F+F]+[+F-F-F] }
* angle 16

http://spanky.triumf.ca/www/fractint/Isys/plants.html
58

1D: Midpoint Displacement

* divide in half
* randomly displace
 scale variance by half

http://www.gameprogrammer.com/fractal.html

59

2D: Diamond-Square

« diamond step

* generate a new value at square midpoint
 average corner values + random amount
 gives diamonds when have multiple squares in grid

e square step

* generate new value at diamond midpoint
 average corner values + random amount
 gives squares again in grid

60

