
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Textures II

Week 9, Fri Mar 16

2

Reading for Last Time and Today

• FCG Chap 11 Texture Mapping
• except 11.8

• RB Chap Texture Mapping
• FCG Sect 16.6 Procedural Techniques
• FCG Sect 16.7 Groups of Objects

3

€

S =1− min(R,G,B)
I

Corrected Correction: HSI/HSV and RGB

• HSV/HSI conversion from RGB
• hue same in both
• value is max, intensity is average

3

BGR
I

++
=

[]

















−−+−

−+−
= −

))(()(

)()(
2
1

cos
2

1

BGBRGR

BRGR
H

€

V =max(R,G,B)

€

S =1− min(R,G,B)
V

• HSI:

• HSV:

4

News

• H3 Q2: OK to use either HSV or HSI

5

News

• Project 3 grading slot signup
• Mon 11-12

• Tue 10-12:30, 4-6

• Wed 11-12, 2:30-4

6

Review: Back-face Culling

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>ZN
yy

zz

7

Review: Invisible Primitives

• why might a polygon be invisible?
• polygon outside the field of view / frustum

• solved by clipping

• polygon is backfacing
• solved by backface culling

• polygon is occluded by object(s) nearer the viewpoint
• solved by hidden surface removal

8

Review: Texture Coordinates

• texture image: 2D array of color values (texels)

• assigning texture coordinates (s,t) at vertex with
object coordinates (x,y,z,w)
• use interpolated (s,t) for texel lookup at each pixel

• use value to modify a polygon’s color
• or other surface property

• specified by programmer or artist glTexCoord2f(s,t)
glVertexf(x,y,z,w)

9

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Review: Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)

(0,4)

(4,0)

(0,0)

10

Review: Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

11

Review: Texture

• action when s or t is outside [0…1] interval
• tiling
• clamping

• functions
• replace/decal
• modulate
• blend

• texture matrix stack
glMatrixMode(GL_TEXTURE);

12

Texturing II

13

Texture Pipeline

Texel color

(0.9,0.8,0.7)

(x, y, z)

Object position

(-2.3, 7.1, 17.7)

(s, t)

Parameter space

(0.32, 0.29)

Texel space

(81, 74)

(s’, t’)

Transformed
parameter space

(0.52, 0.49)

Final color

(0.45,0.4,0.35)

Object color

(0.5,0.5,0.5)

14

Texture Objects and Binding

• texture object
• an OpenGL data type that keeps textures resident in memory

and provides identifiers to easily access them

• provides efficiency gains over having to repeatedly load and
reload a texture

• you can prioritize textures to keep in memory

• OpenGL uses least recently used (LRU) if no priority is
assigned

• texture binding
• which texture to use right now

• switch between preloaded textures

15

Basic OpenGL Texturing

• create a texture object and fill it with texture data:
• glGenTextures(num, &indices) to get identifiers for the objects
• glBindTexture(GL_TEXTURE_2D, identifier) to bind

• following texture commands refer to the bound texture
• glTexParameteri(GL_TEXTURE_2D, …, …) to specify

parameters for use when applying the texture
• glTexImage2D(GL_TEXTURE_2D, ….) to specify the texture data

(the image itself)
• enable texturing: glEnable(GL_TEXTURE_2D)
• state how the texture will be used:

• glTexEnvf(…)

• specify texture coordinates for the polygon:
• use glTexCoord2f(s,t) before each vertex:

• glTexCoord2f(0,0); glVertex3f(x,y,z);

16

Low-Level Details

• large range of functions for controlling layout of texture data
• state how the data in your image is arranged
• e.g.: glPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells

OpenGL not to skip bytes at the end of a row
• you must state how you want the texture to be put in memory:

how many bits per “pixel”, which channels,…

• textures must be square and size a power of 2
• common sizes are 32x32, 64x64, 256x256
• smaller uses less memory, and there is a finite amount of

texture memory on graphics cards

• ok to use texture template sample code for project 4
• http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

17

Texture Mapping

• texture coordinates
• specified at vertices

glTexCoord2f(s,t);
glVertexf(x,y,z);

• interpolated across triangle (like R,G,B,Z)
• …well not quite!

18

Texture Mapping

• texture coordinate interpolation
• perspective foreshortening problem

19

Interpolation: Screen vs. World Space

• screen space interpolation incorrect
• problem ignored with shading, but artifacts

more visible with texturing

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

20

Texture Coordinate Interpolation
• perspective correct interpolation

• α, β, γ :

• barycentric coordinates of a point P in a triangle

• s0, s1, s2 :
• texture coordinates of vertices

• w0, w1,w2 :
• homogeneous coordinates of vertices

210

221100

///

///

www

wswsws
s

γβα
γβα

++

⋅+⋅+⋅
=

(s1,t1)

(s0,t0)

(s2,t2)

(x1,y1,z1,w1)

(x0,y0,z0,w0)

(x2,y2,z2,w2)

(α,β,γ)
(s,t)?

21

Reconstruction

• how to deal with:
• pixels that are much larger than texels?

• apply filtering, “averaging”

• pixels that are much smaller than texels ?
• interpolate

22

MIPmapping

Without MIP-mappingWithout MIP-mapping

With MIP-mappingWith MIP-mapping

use use ““image pyramidimage pyramid”” to to precomputeprecompute
averaged versions of the textureaveraged versions of the texture

store whole pyramid instore whole pyramid in
single block of memorysingle block of memory

23

MIPmaps
• multum in parvo -- many things in a small place

• prespecify a series of prefiltered texture maps of decreasing
resolutions

• requires more texture storage

• avoid shimmering and flashing as objects move
• gluBuild2DMipmaps

• automatically constructs a family of textures from original
texture size down to 1x1

without with

24

MIPmap storage

• only 1/3 more space required

25

Texture Parameters

• in addition to color can control other
material/object properties
• surface normal (bump mapping)

• reflected color (environment mapping)

26

Bump Mapping: Normals As Texture

• object surface often not smooth – to recreate correctly
need complex geometry model

• can control shape “effect” by locally perturbing surface
normal

• random perturbation

• directional change over region

27

Bump Mapping

28

Bump Mapping

29

Embossing

• at transitions
• rotate point’s surface normal by _ or - _

30

Displacement Mapping

• bump mapping gets
silhouettes wrong
• shadows wrong too

• change surface
geometry instead
• only recently

available with
realtime graphics

• need to subdivide
surface

31

Environment Mapping

• cheap way to achieve reflective effect
• generate image of surrounding

• map to object as texture

32

Environment Mapping

• used to model object that reflects
surrounding textures to the eye
• movie example: cyborg in Terminator 2

• different approaches
• sphere, cube most popular

• OpenGL support
• GL_SPHERE_MAP, GL_CUBE_MAP

• others possible too

33

Sphere Mapping

• texture is distorted fish-eye view
• point camera at mirrored sphere

• spherical texture mapping creates texture coordinates that
correctly index into this texture map

34

Cube Mapping

• 6 planar textures, sides of cube
• point camera in 6 different directions, facing

out from origin

35

Cube Mapping

A

B
C

E

F

D

36

Cube Mapping

• direction of reflection vector r selects the face of the
cube to be indexed
• co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

• remaining two coordinates (normalized by the 3rd

coordinate) selects the pixel from the face.
• e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

• difficulty in interpolating across faces

37

Volumetric Texture

• define texture pattern over 3D
domain - 3D space containing
the object
• texture function can be

digitized or procedural

• for each point on object
compute texture from point
location in space

• common for natural
material/irregular textures
(stone, wood,etc…)

38

Volumetric Bump Mapping

Marble

Bump

39

Volumetric Texture Principles

• 3D function ρ(x,y,z)

• texture space – 3D space that holds the
texture (discrete or continuous)

• rendering: for each rendered point P(x,y,z)
compute ρ(x,y,z)

• volumetric texture mapping function/space
transformed with objects

40

Procedural Textures

• generate “image” on the fly, instead of
loading from disk
• often saves space

• allows arbitrary level of detail

41

Procedural Texture Effects: Bombing

• randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
• for point P search table and determine if inside shape

• if so, color by shape

• otherwise, color by objects color

42

Procedural Texture Effects

• simple marble

function boring_marble(point)
x = point.x;
return marble_color(sin(x));
// marble_color maps scalars to colors

43

Perlin Noise: Procedural Textures

• several good explanations
• FCG Section 10.1
• http://www.noisemachine.com/talk1

• http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

• http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/

44

Perlin Noise: Coherency

• smooth not abrupt changes

 coherent white noise

45

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

46

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

47

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

function turbulence(p)

t = 0; scale = 1;

while (scale > pixelsize) {

t +=
abs(Noise(p/scale)*scale);

scale/=2;

} return t;

48

Generating Coherent Noise

• just three main ideas
• nice interpolation

• use vector offsets to make grid irregular

• optimization
• sneaky use of 1D arrays instead of 2D/3D one

49

Interpolating Textures

• nearest neighbor

• bilinear

• hermite

50

Vector Offsets From Grid

• weighted average of gradients
• random unit vectors

51

Optimization

• save memory and time

• conceptually:
• 2D or 3D grid

• populate with random number generator

• actually:
• precompute two 1D arrays of size n (typical size 256)

• random unit vectors

• permutation of integers 0 to n-1

• lookup
• g(i, j, k) = G[(i + P[(j + P[k]) mod n]) mod n]

52

Perlin Marble

• use turbulence, which in turn uses noise:
function marble(point)

x = point.x + turbulence(point);

return marble_color(sin(x))

53

Procedural Approaches

54

Procedural Modeling

• textures, geometry
• nonprocedural: explicitly stored in memory

• procedural approach
• compute something on the fly
• often less memory cost
• visual richness

• fractals, particle systems, noise

55

Fractal Landscapes

• fractals: not just for “showing math”
• triangle subdivision

• vertex displacement

• recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

56

Self-Similarity

• infinite nesting of structure on all scales

57

Fractal Dimension

• D = log(N)/log(r)
N = measure, r = subdivision scale
• Hausdorff dimension: noninteger

D = log(N)/log(r) D = log(4)/log(3) = 1.26

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html

58

Language-Based Generation

• L-Systems: after Lindenmayer
• Koch snowflake: F :- FLFRRFLF

• F: forward, R: right, L: left

• Mariano’s Bush:
 F=FF-[-F+F+F]+[+F-F-F] }
• angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html

59

1D: Midpoint Displacement

• divide in half

• randomly displace

• scale variance by half

http://www.gameprogrammer.com/fractal.html

60

2D: Diamond-Square

• diamond step
• generate a new value at square midpoint

• average corner values + random amount

• gives diamonds when have multiple squares in grid

• square step
• generate new value at diamond midpoint

• average corner values + random amount

• gives squares again in grid

