
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Textures I

Week 9, Wed Mar 14

2

Reading for Today and Next Time

• FCG Chap 11 Texture Mapping
• except 11.8

• RB Chap Texture Mapping
• FCG Sect 16.6 Procedural Techniques
• FCG Sect 16.7 Groups of Objects

3

News

• Q3 specular color should be (1,1,0)

• P3: bug in sample implementation fixed
• new reference images and sample binaries

posted

• no change to template

4

€

S =1− min(R,G,B)
I

Correction: HSV and RGB

• HSV/HSI conversion from RGB
• not expressible in matrix

3

BGR
I

++
=

[]

















−−+−

−+−
= −

))(()(

)()(
2
1

cos
2

1

BGBRGR

BRGR
H

5

Review: Z-Buffer Algorithm

• augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel
• at frame beginning, initialize all pixel depths

to ∞
• when rasterizing, interpolate depth (Z)

across polygon
• check Z-buffer before storing pixel color in

framebuffer and storing depth in Z-buffer
• don’t write pixel if its Z value is more distant

than the Z value already stored there
6

Clarification/Review: Depth Test Precision

• reminder: projective transformation maps
eye-space z to generic z-range (NDC)

• thus zN ~= 1/zE























⋅

























−
−

−

−

+−
−

+

−

−

+

−

=























E

E

E

E

N

N

N

N

w

z

y

x

nf

fn

nf

nf
bt

bt

bt

n
lr

lr

lr

n

w

z

y

x

0100

2)(
00

0
2

0

00
2

ENEEN zww
nf

fn
z

nf

nf
z −=

−

−
+

−

+−
= ,

2)(
E

E

N

N

z

w

nf

fn

nf

nf

w

z

−
+

−

+
=

2

7

Backface Culling

8

Back-Face Culling

• on the surface of a "solid" object, polygons
whose normals point away from the
camera are always occluded:

note: backface culling
alone doesn’t solve the

hidden-surface problem!

9

Back-Face Culling

• not rendering backfacing polygons improves
performance
• by how much?

• reduces by about half the number of polygons
to be considered for each pixel

• optimization when appropriate

10

Back-face Culling: VCS

yy

zz

first idea:first idea:
cull if cull if 0<ZN

sometimessometimes
misses polygons thatmisses polygons that
should be culledshould be culledeyeeye

11

Back-face Culling: NDCS

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>ZN
yy

zz

12

Back-Face Culling: Manifolds

• most objects in scene are typically “solid”
• specifically: orientable closed manifolds

• orientable: must have two distinct sides
• cannot self-intersect
• a sphere is orientable since has

two sides, 'inside' and 'outside'.
• a Mobius strip or a Klein bottle is

not orientable

• closed: cannot “walk” from one
side to the other

• sphere is closed manifold
• plane is not

13

Back-Face Culling: Manifolds

Yes No

• most objects in scene are typically “solid”

• specifically: orientable closed manifolds
• manifold: local neighborhood of all points isomorphic to

disc

• boundary partitions space into interior & exterior

14

Backface Culling: Manifolds

• examples of manifold objects:
• sphere

• torus

• well-formed CAD part

• examples of non-manifold objects:
• a single polygon

• a terrain or height field

• polyhedron w/ missing face

• anything with cracks or holes in boundary

• one-polygon thick lampshade

15

Invisible Primitives

• why might a polygon be invisible?
• polygon outside the field of view / frustum

• solved by clipping

• polygon is backfacing
• solved by backface culling

• polygon is occluded by object(s) nearer the viewpoint
• solved by hidden surface removal

16

Texturing

17

Rendering Pipeline

Geometry
Database
Geometry
Database

Model/View
Transform.
Model/View
Transform. LightingLighting Perspective

Transform.
Perspective
Transform. ClippingClipping

Scan
Conversion

Scan
Conversion

Depth
Test

Depth
Test

TexturingTexturing BlendingBlending
Frame-
buffer

Frame-
buffer

Geometry ProcessingGeometry Processing

RasterizationRasterization Fragment ProcessingFragment Processing

18

Texture Mapping

• real life objects have
nonuniform colors,
normals

• to generate realistic
objects, reproduce
coloring & normal
variations = texture

• can often replace
complex geometric
details

19

Texture Mapping

• introduced to increase realism
• lighting/shading models not enough

• hide geometric simplicity
• images convey illusion of geometry
• map a brick wall texture on a flat polygon
• create bumpy effect on surface

• associate 2D information with 3D surface
• point on surface corresponds to a point in

texture
• “paint” image onto polygon

20

Color Texture Mapping

• define color (RGB) for each point on object
surface

• two approaches
• surface texture map

• volumetric texture

21

Texture Coordinates

• texture image: 2D array of color values (texels)

• assigning texture coordinates (s,t) at vertex with
object coordinates (x,y,z,w)
• use interpolated (s,t) for texel lookup at each pixel

• use value to modify a polygon’s color
• or other surface property

• specified by programmer or artist glTexCoord2f(s,t)
glVertexf(x,y,z,w)

22

Texture Mapping Example

+ =

23

Example Texture Map

glTexCoord2d(0,0);
glVertex3d (0, -2, -2);

glTexCoord2d(1,1);
glVertex3d (0, 2, 2);

24

Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

25

Texture Lookup: Tiling and Clamping

• what if s or t is outside the interval [0…1]?

• multiple choices
• use fractional part of texture coordinates

• cyclic repetition of texture to tile whole surface
glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_REPEAT,
GL_TEXTURE_WRAP_T, GL_REPEAT, ...)

• clamp every component to range [0…1]
• re-use color values from texture image border

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_CLAMP,
GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

26

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)

(0,4)

(4,0)

(0,0)

27

Demo

• Nate Robbins tutors
• texture

28

Texture Coordinate Transformation

• motivation
• change scale, orientation of texture on an object

• approach
• texture matrix stack
• transforms specified (or generated) tex coords

glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glRotate();
 …

• more flexible than changing (s,t) coordinates

• [demo]

29

Texture Functions
• once have value from the texture map, can:

• directly use as surface color: GL_REPLACE
• throw away old color, lose lighting effects

• modulate surface color: GL_MODULATE
• multiply old color by new value, keep lighting info
• texturing happens after lighting, not relit

• use as surface color, modulate alpha: GL_DECAL
• like replace, but supports texture transparency

• blend surface color with another: GL_BLEND
• new value controls which of 2 colors to use
• indirection, new value not used directly for coloring

• specify with glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, <mode>)

• [demo]

30

Texture Pipeline

Texel color

(0.9,0.8,0.7)

(x, y, z)

Object position

(-2.3, 7.1, 17.7)

(s, t)

Parameter space

(0.32, 0.29)

Texel space

(81, 74)

(s’, t’)

Transformed
parameter space

(0.52, 0.49)

Final color

(0.45,0.4,0.35)

Object color

(0.5,0.5,0.5)

31

Texture Objects and Binding

• texture object
• an OpenGL data type that keeps textures resident in memory

and provides identifiers to easily access them

• provides efficiency gains over having to repeatedly load and
reload a texture

• you can prioritize textures to keep in memory

• OpenGL uses least recently used (LRU) if no priority is
assigned

• texture binding
• which texture to use right now

• switch between preloaded textures

32

Basic OpenGL Texturing

• create a texture object and fill it with texture data:
• glGenTextures(num, &indices) to get identifiers for the objects
• glBindTexture(GL_TEXTURE_2D, identifier) to bind

• following texture commands refer to the bound texture
• glTexParameteri(GL_TEXTURE_2D, …, …) to specify

parameters for use when applying the texture
• glTexImage2D(GL_TEXTURE_2D, ….) to specify the texture data

(the image itself)
• enable texturing: glEnable(GL_TEXTURE_2D)
• state how the texture will be used:

• glTexEnvf(…)

• specify texture coordinates for the polygon:
• use glTexCoord2f(s,t) before each vertex:

• glTexCoord2f(0,0); glVertex3f(x,y,z);

33

Low-Level Details

• large range of functions for controlling layout of texture data
• state how the data in your image is arranged
• e.g.: glPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells

OpenGL not to skip bytes at the end of a row
• you must state how you want the texture to be put in memory:

how many bits per “pixel”, which channels,…

• textures must be square and size a power of 2
• common sizes are 32x32, 64x64, 256x256
• smaller uses less memory, and there is a finite amount of

texture memory on graphics cards

• ok to use texture template sample code for project 4
• http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

34

Texture Mapping

• texture coordinates
• specified at vertices

glTexCoord2f(s,t);
glVertexf(x,y,z);

• interpolated across triangle (like R,G,B,Z)
• …well not quite!

35

Texture Mapping

• texture coordinate interpolation
• perspective foreshortening problem

36

Interpolation: Screen vs. World Space

• screen space interpolation incorrect
• problem ignored with shading, but artifacts

more visible with texturing

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

37

Texture Coordinate Interpolation
• perspective correct interpolation

• α, β, γ :

• barycentric coordinates of a point P in a triangle

• s0, s1, s2 :
• texture coordinates of vertices

• w0, w1,w2 :
• homogeneous coordinates of vertices

210

221100

///

///

www

wswsws
s

γβα
γβα

++

⋅+⋅+⋅
=

(s1,t1)

(s0,t0)

(s2,t2)

(x1,y1,z1,w1)

(x0,y0,z0,w0)

(x2,y2,z2,w2)

(α,β,γ)
(s,t)?

38

Reconstruction

(image courtesy of (image courtesy of Kiriakos KutulakosKiriakos Kutulakos, U Rochester), U Rochester)
39

Reconstruction

• how to deal with:
• pixels that are much larger than texels?

• apply filtering, “averaging”

• pixels that are much smaller than texels ?
• interpolate

40

MIPmapping

Without MIP-mappingWithout MIP-mapping

With MIP-mappingWith MIP-mapping

use use ““image pyramidimage pyramid”” to to precomputeprecompute
averaged versions of the textureaveraged versions of the texture

store whole pyramid instore whole pyramid in
single block of memorysingle block of memory

41

MIPmaps
• multum in parvo -- many things in a small place

• prespecify a series of prefiltered texture maps of decreasing
resolutions

• requires more texture storage

• avoid shimmering and flashing as objects move
• gluBuild2DMipmaps

• automatically constructs a family of textures from original
texture size down to 1x1

without with

42

MIPmap storage

• only 1/3 more space required

43

Texture Parameters

• in addition to color can control other
material/object properties
• surface normal (bump mapping)

• reflected color (environment mapping)

44

Bump Mapping: Normals As Texture

• object surface often not smooth – to recreate correctly
need complex geometry model

• can control shape “effect” by locally perturbing surface
normal

• random perturbation

• directional change over region

45

Bump Mapping

46

Bump Mapping

47

Embossing

• at transitions
• rotate point’s surface normal by _ or - _

48

Displacement Mapping

• bump mapping gets
silhouettes wrong
• shadows wrong too

• change surface
geometry instead
• only recently

available with
realtime graphics

• need to subdivide
surface

49

Environment Mapping

• cheap way to achieve reflective effect
• generate image of surrounding

• map to object as texture

50

Environment Mapping

• used to model object that reflects
surrounding textures to the eye
• movie example: cyborg in Terminator 2

• different approaches
• sphere, cube most popular

• OpenGL support
• GL_SPHERE_MAP, GL_CUBE_MAP

• others possible too

51

Sphere Mapping

• texture is distorted fish-eye view
• point camera at mirrored sphere

• spherical texture mapping creates texture coordinates that
correctly index into this texture map

52

Cube Mapping

• 6 planar textures, sides of cube
• point camera in 6 different directions, facing

out from origin

53

Cube Mapping

A

B
C

E

F

D

54

Cube Mapping

• direction of reflection vector r selects the face of the
cube to be indexed
• co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

• remaining two coordinates (normalized by the 3rd

coordinate) selects the pixel from the face.
• e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

• difficulty in interpolating across faces

55

Review: Texture Objects and Binding

• texture objects
• texture management: switch with bind, not reloading

• can prioritize textures to keep in memory

• Q: what happens to textures kicked out of memory?
• A: resident memory (on graphics card) vs.

nonresident (on CPU)

• details hidden from developers by OpenGL

56

Volumetric Texture

• define texture pattern over 3D
domain - 3D space containing
the object
• texture function can be

digitized or procedural

• for each point on object
compute texture from point
location in space

• common for natural
material/irregular textures
(stone, wood,etc…)

57

Volumetric Bump Mapping

Marble

Bump

58

Volumetric Texture Principles

• 3D function ρ
∀ρ = ρ(x,y,z)

• texture space – 3D space that holds the
texture (discrete or continuous)

• rendering: for each rendered point P(x,y,z)
compute ρ(x,y,z)

• volumetric texture mapping function/space
transformed with objects

