
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Advanced Rendering II

Week 7, Fri Mar 2

2

Reading for Last and This Time

• FCG Chap 10 Ray Tracing
• only 10.1-10.7

• FCG Chap 25 Image-Based Rendering

3

News

• signup sheet for P2 grading
• Mon 11-12, 2-3, 5-5:30

• Tue 11-1

• Wed 11-12, 2-3, 5-5:30

4

Review: Shading Models

• flat shading
• compute Phong lighting once for entire

polygon
• Gouraud shading

• compute Phong lighting at the vertices and
interpolate lighting values across polygon

• Phong shading
• compute averaged vertex normals
• interpolate normals across polygon and

perform Phong lighting across polygon

5

Review/Clarification: Specifying Normals

• OpenGL state machine
• uses last normal specified
• if no normals specified, assumes all identical

• per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

• per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

• normal interpreted as direction from vertex location
• can automatically normalize (computational cost)

glEnable(GL_NORMALIZE); 6

Review: Recursive Ray Tracing
• ray tracing can handle

• reflection (chrome/mirror)
• refraction (glass)
• shadows

• one primary ray per pixel
• spawn secondary rays

• reflection, refraction
• if another object is hit, recurse to

find its color

• shadow
• cast ray from intersection point to

light source, check if intersects
another object

• termination criteria
• no intersection (ray exits scene)
• max bounces (recursion depth)
• attenuated below threshold

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray Shadow

Rays

7

Review: Reflection and Refraction

• refraction: mirror effects
• perfect specular reflection

• refraction: at boundary

• Snell’s Law
• light ray bends based on

refractive indices c1, c2

2211 sinsin θθ cc =

n

θ 1

θ 2

d

t

n

θ θ

8

Advanced Rendering II

9

Ray Trees

www.cs.virginia.edu/~gfx/Courses/2003/Intro.fall.03/slides/lighting_web/lighting.pdf

• all rays directly or indirectly spawned off by a single
primary ray

10

Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object

11

Ray Generation

• camera coordinate system
• origin: C (camera position)

• viewing direction: v

• up vector: u
• x direction: x= v × u

• note:
• corresponds to viewing

transformation in rendering pipeline

• like gluLookAt

uu

vv

xxCC

12

Ray Generation

• other parameters:
• distance of camera from image plane: d

• image resolution (in pixels): w, h

• left, right, top, bottom boundaries
in image plane: l, r, t, b

• then:
• lower left corner of image:

• pixel at position i, j (i=0..w-1, j=0..h-1):

uxv ⋅+⋅+⋅+= bldCO

yx

ux

⋅Δ⋅−⋅Δ⋅+=

⋅
−

−
⋅−⋅

−

−
⋅+=

yjxiO
h

bt
j

w

lr
iOP ji 11,

uu

vv

xxCC

13

Ray Generation

• ray in 3D space:

where t= 0…∞

jijiji tCCPtCt ,,,)()(R v⋅+=−⋅+=

14

Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object

15

• inner loop of ray-tracing
• must be extremely efficient

• task: given an object o, find ray parameter t, such
that Ri,j(t) is a point on the object

• such a value for t may not exist

• solve a set of equations

• intersection test depends on geometric primitive
• ray-sphere

• ray-triangle

• ray-polygon

Ray - Object Intersections

16

Ray Intersections: Spheres

• spheres at origin
• implicit function

• ray equation

2222:),,(rzyxzyxS =++

















⋅+

⋅+

⋅+

=
















⋅+
















=⋅+=

zz

yy

xx

z

y

x

z

y

x

jiji

vtc

vtc

vtc

v

v

v

t

c

c

c

tCt ,,)(R v

17

Ray Intersections: Spheres

• to determine intersection:
• insert ray Ri,j(t) into S(x,y,z):

• solve for t (find roots)
• simple quadratic equation

2222)()()(rvtcvtcvtc zzyyxx =⋅++⋅++⋅+

18

Ray Intersections: Other Primitives

• implicit functions
• spheres at arbitrary positions

• same thing

• conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)

• same thing (all are quadratic functions!)

• polygons
• first intersect ray with plane

• linear implicit function

• then test whether point is inside or outside of polygon (2D test)
• for convex polygons

• suffices to test whether point in on the correct side of every
boundary edge

• similar to computation of outcodes in line clipping (upcoming)

19

Ray-Triangle Intersection

• method in book is elegant but a bit complex
• easier approach: triangle is just a polygon

• intersect ray with plane

• check if ray inside triangle

€

normal : n = (b− a) × (c − a)
ray : x = e +td

plane : (p− x) ⋅n = 0⇒ x =
p ⋅n
n

p ⋅n
n

= e +td⇒ t = −
(e −p) ⋅n
d ⋅n

p is a or b or c

a

b

c

e

d

x

n

20

Ray-Triangle Intersection

• check if ray inside triangle
• check if point counterclockwise from each edge (to

its left)
• check if cross product points in same direction as

normal (i.e. if dot is positive)

• more details at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf€

(b− a) × (x − a) ⋅n ≥ 0
(c −b) × (x −b) ⋅n ≥ 0
(a − c) × (x − c) ⋅n ≥ 0

a

b

c

x

n

CCW

21

Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object

22

Geometric Transformations

• similar goal as in rendering pipeline:
• modeling scenes more convenient using different

coordinate systems for individual objects

• problem
• not all object representations are easy to transform

• problem is fixed in rendering pipeline by restriction to
polygons, which are affine invariant

• ray tracing has different solution
• ray itself is always affine invariant

• thus: transform ray into object coordinates!

23

Geometric Transformations

• ray transformation
• for intersection test, it is only important that ray is in

same coordinate system as object representation

• transform all rays into object coordinates
• transform camera point and ray direction by inverse of

model/view matrix

• shading has to be done in world coordinates (where
light sources are given)

• transform object space intersection point to world
coordinates

• thus have to keep both world and object-space ray

24

Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object

25

Local Lighting

• local surface information (normal…)
• for implicit surfaces F(x,y,z)=0: normal n(x,y,z)

can be easily computed at every intersection
point using the gradient

• example:

















∂∂

∂∂

∂∂

=

zzyxF

yzyxF

xzyxF

zyx

/),,(

/),,(

/),,(

),,(n

2222),,(rzyxzyxF −++=

















=

z

y

x

zyx

2

2

2

),,(n needs to be normalized!needs to be normalized!

26

Local Lighting

• local surface information
• alternatively: can interpolate per-vertex

information for triangles/meshes as in
rendering pipeline
• now easy to use Phong shading!

• as discussed for rendering pipeline

• difference with rendering pipeline:
• interpolation cannot be done incrementally
• have to compute barycentric coordinates for

every intersection point (e.g plane equation for
triangles)

27

Global Shadows

• approach
• to test whether point is in shadow, send out

shadow rays to all light sources
• if ray hits another object, the point lies in

shadow

28

Global Reflections/Refractions

• approach
• send rays out in reflected and refracted direction to

gather incoming light

• that light is multiplied by local surface color and
added to result of local shading

29

Total Internal Reflection

http://www.physicsclassroom.com/Class/refrn/U14L3b.html 30

Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object

31

Optimized Ray-Tracing

• basic algorithm simple but very expensive

• optimize by reducing:
• number of rays traced

• number of ray-object intersection calculations

• methods
• bounding volumes: boxes, spheres

• spatial subdivision
• uniform

• BSP trees

• (more on this later with collision)

32

Example Images

33

Radiosity

• radiosity definition
• rate at which energy emitted or reflected by a surface

• radiosity methods
• capture diffuse-diffuse bouncing of light

• indirect effects difficult to handle with raytracing

34

Radiosity

• illumination as radiative heat transfer

• conserve light energy in a volume

• model light transport as packet flow until convergence

• solution captures diffuse-diffuse bouncing of light

• view-independent technique
• calculate solution for entire scene offline

• browse from any viewpoint in realtime

heat/light source

thermometer/eye

reflective objects

energy
packets

35

Radiosity

[IBM][IBM]

• divide surfaces into small patches

• loop: check for light exchange between all pairs
• form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/continuous.jpgescience.anu.edu.au/lecture/cg/GlobalIllumination/Image/discrete.jpg
36

Better Global Illumination
• ray-tracing: great specular, approx. diffuse

• view dependent

• radiosity: great diffuse, specular ignored
• view independent, mostly-enclosed volumes

• photon mapping: superset of raytracing and radiosity
• view dependent, handles both diffuse and specular well

raytracing photon mapping

graphics.ucsd.edu/~henrik/images/cbox.html

37

Subsurface Scattering: Translucency

• light enters and leaves at different locations
on the surface
• bounces around inside

• technical Academy Award, 2003
• Jensen, Marschner, Hanrahan

38

Subsurface Scattering: Marble

39

Subsurface Scattering: Milk vs. Paint

40

Subsurface Scattering: Skin

41

Subsurface Scattering: Skin

42

Non-Photorealistic Rendering

• simulate look of hand-drawn sketches or
paintings, using digital models

www.red3d.com/cwr/npr/
43

Non-Photorealistic Shading

• cool-to-warm shading

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

€

kw =
1+ n ⋅ l
2

,c = kwcw + (1− kw)cc

standard cool-to-warm with edges/creases

44

Non-Photorealistic Shading

• draw silhouettes: if , e=edge-eye vector

• draw creases: if

€

(e ⋅n0)(e ⋅n1) ≤ 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

€

(n0 ⋅n1) ≤ threshold
standard cool-to-warm with edges/creases

45

Image-Based Modelling and Rendering
• store and access only pixels

• no geometry, no light simulation, ...
• input: set of images
• output: image from new viewpoint

• surprisingly large set of possible new viewpoints
• interpolation allows translation, not just rotation

• lightfield, lumigraph: translate outside convex hull of object
• QuickTimeVR: camera rotates, no translation

• can point camera in or out

46

Image-Based Rendering

• display time not tied to scene complexity
• expensive rendering or real photographs

• example: Matrix bullet-time scene
• array of many cameras allows virtual camera to "freeze time"

• convergence of graphics, vision, photography
• computational photography

