

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007

Tamara Munzner

Viewing/Projections II

Week 4, Mon Jan 29

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

News

- extra TA coverage in lab to answer questions
 - Mon 2-3:30
 - Wed 2-3:30
 - Thu 12:30-2
- CSSS gateway: easy way to read newsgroup
 - http://thecube.ca/webnews/newsgroups.php
 - can post too if you create account

Reading for Today and Next Lecture

- FCG Chapter 7 Viewing
- FCG Section 6.3.1 Windowing Transforms

- RB rest of Chap Viewing
- RB rest of App Homogeneous Coords

Correction: RCS Basics

- setup, just do once in a directory
 - mkdir RCS
- checkin
 - ci –u p1.cpp
- checkout
 - co –l p1.cpp
- see history
 - rlog p1.cpp
- compare to previous version
 - rcsdiff p1.cpp
- checkout old version to stdout
 - co –p1.5 p1.cpp > p1.cpp.5

Review: Camera Motion

- rotate/translate/scale difficult to control
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector

Review: World to View Coordinates

- translate eye to origin
- rotate view vector (lookat eye) to w axis
- rotate around w to bring up into vw-plane

Review: Moving Camera or World?

- two equivalent operations
 - move camera one way vs. move world other way
- example
 - initial OpenGL camera: at origin, looking along -z axis
 - create a unit square parallel to camera at z = -10
- translate in z by 3 possible in two ways
 - camera moves to z = -3
 - Note OpenGL models viewing in left-hand coordinates
 - camera stays put, but world moves to -7
- resulting image same either way
 - possible difference: are lights specified in world or view coordinates?

Projections I

Pinhole Camera

- ingredients
 - box, film, hole punch
- result
 - picture

www.pinhole.org

www.debevec.org/Pinhole

Pinhole Camera

- theoretical perfect pinhole
 - light shining through tiny hole into dark space yields upside-down picture

Pinhole Camera

- non-zero sized hole
- blur: rays hit multiple points on film plane

Real Cameras

- pinhole camera has small aperture (lens opening)
 - minimize blur
- problem: hard to get enough light to expose the film
- solution: lens
 - permits larger apertures
 - permits changing distance to film plane without actually moving it
 - cost: limited depth of field where image is in focus

Graphics Cameras

real pinhole camera: image inverted

v computer graphics camera: convenient equivalent

General Projection

 image plane need not be perpendicular to view plane

Perspective Projection

our camera must model perspective

Perspective Projection

our camera must model perspective

Perspective Projections

Projective Transformations

- planar geometric projections
- planar: onto a plane
- geometric: using straight lines
- projections: 3D -> 2D
- aka projective mappings
- counterexamples?

Projective Transformations

- properties
 - lines mapped to lines and triangles to triangles
 - parallel lines do NOT remain parallel
 - e.g. rails vanishing at infinity

- affine combinations are NOT preserved
 - e.g. center of a line does not map to center of projected line (perspective foreshortening)

Perspective Projection

- project all geometry
 - through common center of projection (eye point)
 - onto an image plane

Perspective Projection

Basic Perspective Projection

similar triangles

$$\frac{x'}{d} = \frac{x}{z} \implies x' = \frac{x \cdot d}{z}$$

but
$$z' = d$$

- nonuniform foreshortening
 - not affine

Perspective Projection

 desired result for a point [x, y, z, 1]^T projected onto the view plane:

$$\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}$$

$$x' = \frac{x \cdot d}{z} = \frac{x}{z/d}, \quad y' = \frac{y \cdot d}{z} = \frac{y}{z/d}, \quad z' = d$$

what could a matrix look like to do this?

Simple Perspective Projection Matrix

$$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \end{bmatrix}$$

Simple Perspective Projection Matrix

ſ	x			
	$\overline{z/d}$	is homogenized version of	\mathcal{Y}	
l y	\mathcal{Y}		Z	
	$\overline{z/d}$	where $w = z/d$	[z/d]	
	•			

Simple Perspective Projection Matrix

$$\begin{bmatrix} x \\ \hline z/d \\ \hline y \\ \hline z/d \\ d \end{bmatrix}$$

$$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \end{bmatrix} \text{ is homogenized version of } \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

$$\begin{cases} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Perspective Projection

- expressible with 4x4 homogeneous matrix
 - use previously untouched bottom row
- perspective projection is irreversible
 - many 3D points can be mapped to same (x, y, d) on the projection plane
 - no way to retrieve the unique z values

Moving COP to Infinity

- as COP moves away, lines approach parallel
 - when COP at infinity, orthographic view

Orthographic Camera Projection

- camera's back plane parallel to lens
- infinite focal length
- no perspective convergence
- just throw away z values

$$\begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Perspective to Orthographic

- transformation of space
 - center of projection moves to infinity
 - view volume transformed
 - from frustum (truncated pyramid) to parallelepiped (box)

View Volumes

- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test

Canonical View Volumes

standardized viewing volume representation

perspective

orthographic orthogonal parallel

Why Canonical View Volumes?

- permits standardization
 - clipping
 - easier to determine if an arbitrary point is enclosed in volume with canonical view volume vs. clipping to six arbitrary planes
 - rendering
 - projection and rasterization algorithms can be reused

Normalized Device Coordinates

- convention
 - viewing frustum mapped to specific parallelepiped
 - Normalized Device Coordinates (NDC)
 - same as clipping coords
 - only objects inside the parallelepiped get rendered
 - which parallelepiped?
 - depends on rendering system

Normalized Device Coordinates

left/right x = +/-1, top/bottom y = +/-1, near/far z = +/-1

Camera coordinates

NDC

Understanding Z

- z axis flip changes coord system handedness
 - RHS before projection (eye/view coords)
 - LHS after projection (clip, norm device coords)

Understanding Z

near, far always positive in OpenGL calls

```
glOrtho(left,right,bot,top,near,far);
glFrustum(left,right,bot,top,near,far);
glPerspective(fovy,aspect,near,far);
```

y=top x=left y = -near x = -far x=right

Understanding Z

- why near and far plane?
 - near plane:
 - avoid singularity (division by zero, or very small numbers)
 - far plane:
 - store depth in fixed-point representation (integer), thus have to have fixed range of values (0...1)
 - avoid/reduce numerical precision artifacts for distant objects

$$y' = a \cdot y + b$$
 $y = top \rightarrow y' = 1$
 $y = bot \rightarrow y' = -1$

$$y' = a \cdot y + b$$
 $y = top \rightarrow y' = 1$ $1 = a \cdot top + b$
 $y = bot \rightarrow y' = -1$ $-1 = a \cdot bot + b$

$$b = 1 - a \cdot top, b = -1 - a \cdot bot$$

$$1 - a \cdot top = -1 - a \cdot bot$$

$$1 - (-1) = -a \cdot bot - (-a \cdot top)$$

$$2 = a(-bot + top)$$

$$a = \frac{2}{top - bot}$$

$$b = \frac{(top - bot) - 2 \cdot top}{top - bot}$$

$$b = \frac{-top - bot}{top - bot}$$

scale, translate, reflect for new coord sys

$$y' = a \cdot y + b$$
 $y = top \rightarrow y' = 1$
 $y = bot \rightarrow y' = -1$

$$a = \frac{2}{top - bot}$$

$$b = -\frac{top + bot}{top - bot}$$

same idea for right/left, far/near

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic OpenGL

```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left,right,bot,top,near,far);
```