University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Viewing/Projections Il

Week 4, Mon Jan 29
http://www.ugrad.cs.ubc.ca/~cs314/Vian2007

News

» extra TA coverage in lab to answer questions
* Mon 2-3:30
* Wed 2-3:30
* Thu 12:30-2

« CSSS gateway: easy way to read newsgroup
* http://thecube.ca/webnews/newsgroups.php
* can post too if you create account

Reading for Today and Next Lecture

FCG Chapter 7 Viewing
FCG Section 6.3.1 Windowing Transforms

RB rest of Chap Viewing
RB rest of App Homogeneous Coords

Correction: RCS Basics

setup, just do once in a directory
* mkdir RCS

checkin
* ci—upl.cpp
checkout
* co-lpl.cpp
see history
+| rlog |p1.cpp
compare to previous version
« rcsdiff p1.cpp
checkout old version to stdout
* co—p1.5pl.cpp>pl.cpp.5

Review: Camera Motion

* rotate/translate/scale difficult to control
e arbitrary viewing position
* eye point, gaze/lookat direction, up vector

y lookat > @
X Pref
WCS .j>\\\///’/;;;;'
Z UP_}C
eye 4
‘/ / \

Peye

Review: World to View Coordinates

* translate eye to origin
* rotate view vector (lookat — eye) to w axis
* rotate around w to bring up into vw-plane

y

WCS

lookat

X
PN
ves T up }
eye C
/ /N MWZV
Peye

u

Review: Moving Camera or World?

* two equivalent operations
° move camera one way vs. move world other way

* example
* initial OpenGL camera: at origin, looking along -z axis
 create a unit square parallel to camera at z = -10

 translate in z by 3 possible in two ways

* camera movestoz=-3
Note OpenGL models viewing in left-hand coordinates

« camera stays put, but world moves to -7
* resulting image same either way

 possible difference: are lights specified in world or view
coordinates?

Projections |

Pinhole Camera

ingredients

* box, film, hole punch
result !
° picture Wwwkodak.com

www.pinhole.org

www.debevec.org/Pinhole

Pinhole Camera

* theoretical perfect pinhole
* light shining through tiny hole into dark space
yields upside-down picture

one ray
of projection

perfect
pinhole

film plane y

Pinhole Camera

* non-zero sized hole
* blur: rays hit multiple points on film plane

multiple rays
actual of projection

pinhole

film plane §

Real Cameras

pinhole camera has small

aperture (lens opening) ><<T

* minimize blur
aperture

problem: hard to get enough light
to expose the film

A

solution: lens %(')//T |

. | >
* permits larger apertures lens | oot
. . . : ep
« permits changing distance to film of
plane without actually moving it | ay field
- cost: limited depth of field where @ are using. If you the
. . the depth of field wi
|mage IS IN fOCUS ce to infinity.< Forx

umcera has a hyperh
€ I e at |

http://en.wikipedia.org/wiki/Image:DOF-ShallowDepthofField.jpg

12

Graphics Cameras

* real pinhole camera: image inverted

eye

image point

plane

v computer graphics camera: convenient equivalent

eye
point

center of
projection image
plane

13

General Projection

* Image plane need not be perpendicular to
view plane

eye
int
image pon
plane

eye
point

image
plane

14

Perspective Projection

* our camera must model perspective

15

Perspective Projection

* our camera must model perspective

16

Perspective Projections

» classified by vanishing points

one-point
perspective

~—

T~

_—

two-po

int

perspective

three-point
perspective

17

Projective Transformations

* planar geometric projections
» planar: onto a plane

» geometric: using straight lines
* projections: 3D -> 2D

 aka projective mappings

* counterexamples?

18

Projective Transformations

* properties
* lines mapped to lines and triangles to triangles

» parallel lines do NOT remain parallel
* e.g. rails vanishing at infinity

[l 3
g == L]
e e 2 7

- affine combinations are NOT presrved

* e.g. center of a line does not map to center of
projected line (perspective foreshortening)

19

Perspective Projection

* project all geometry
» through common center of projection (eye point)
» onto an image plane

20

Perspective Projection

projection
plane

center of projection
(eye point)

Bl L how tan shourd
o this bunny be?

21

Basic Perspective Projection

similar triangles

y! P(x,y,2) |
Yy oy o, yd
P(Xy",2) IR G

| z
z’=

x' x x-d
el — x':

d =z z

* nonuniform foreshortening
* not affine

but z'=d

22

Perspective Projection

- desired result for a point [x, y, z, 1]" projected
onto the view plane:

' '

X' xooy oy
d d oz
XA _ X yd Yy
z z/d z z/d

 what could a matrix look like to do this?

23

Simple Perspective Projection Matrix

oy

z/d

z/ld

24

Simple Perspective Projection Matrix

z/d

z/ld

oy

IS homogenized version of

where w = z/d

Z/d

25

Simple Perspective Projection Matrix

S
z/d | is homogenized version of
y Z
z/d| wherew = z/d z/d
d
1 0 O Offx
01 0 olly
z | 0 0 1 0l|lz
z/d| |0 0 1/d of|1

Perspective Projection

» expressible with 4x4 homogeneous matrix
* use previously untouched bottom row
* perspective projection is irreversible

* many 3D points can be mapped to same
(X, y, d) on the projection plane

* no way to retrieve the unique z values

27

Moving COP to Infinity

» as COP moves away, lines approach parallel
« when COP at infinity, orthographic view

i

28

Orthographic Camera Projection

camera’s back plane
parallel to lens

infinite focal length

no perspective
convergence

just throw away z values

o o o

oS O = O

o o o O

— o O O

] . N \< >< 1

29

Perspective to Orthographic

* transformation of space

» center of projection moves to infinity

* view volume transformed
 from frustum (truncated pyramid) to

parallelepiped (box)

AXx

.
K
kS
o
S
.
.
.
.
.
.
.
o
S

Frustum

te
0
o
0
.
.
O
.
‘e
.
O
.
g
g
‘e
o

AXx

Parallelepiped

30

View Volumes

* specifies field-of-view, used for clipping
» restricts domain of z stored for visibility test

perspective view volume orthographic view volume

\ y:top
x=left

I T \ Z(/& B
7 g < x=right
// — VeS \

VCS y=bottom Z=-near z=-far X /z=-far

x=right y=bottom ,_ hear

y=top

31

Canonical View Volumes
» standardized viewing volume representation
perspective orthographic

orthogonal
parallel

xory back

32

Why Canonical View Volumes?

* permits standardization

* clipping
- easier to determine if an arbitrary point is
enclosed in volume with canonical view
volume vs. clipping to six arbitrary planes

* rendering

* projection and rasterization algorithms can be
reused

33

Normalized Device Coordinates

convention

* viewing frustum mapped to specific
parallelepiped

* Normalized Device Coordinates (NDC)
* same as clipping coords

 only objects inside the parallelepiped get
rendered

* which parallelepiped?
» depends on rendering system

34

Normalized Device Coordinates

left/right x =+/- 1, top/bottom y =+/- 1, near/far z =+/- 1

Camera coordinates

right

.
K
kS
o
S
.
o
.
.
.
.
.
o
S

left

te
0
o
0
.
O
.
0
.
O
.
0
‘e
ol

Z—-Nn

Frustum

—>

=

x=1

X= -

NDC

.

z=-1

z=1

35

Understanding Z

» z axis flip changes coord system handedness
* RHS before projection (eye/view coords)
» LHS after projection (clip, norm device coords)

VCS NDCS

x=left y=top// @ (1 51 ,1)
y \ 7
Z/%\ x:right (-1 !-1 !-1) \/X

/z=-far

Z=-near

36

Understanding Z

near, far always positive in OpenGL calls

glOrtho(left,right,bot,top,near,far);
glFrustum(left,right,bot,top,near,far);
glPerspective(fovy,aspect,near,far);

perspective view volume orthographic view volume

y=top
y=top

y

.. .] N
......................... x=right
/ VCS

VCS y=bottom Z=-near z=-far X /z=-far

x=right y=bottom _ .

37

Understanding Z

* why near and far plane?

* near plane:

* avoid singularity (division by zero, or very
small numbers)

* far plane:

» store depth in fixed-point representation
(integer), thus have to have fixed range of
values (0...1)

 avoid/reduce numerical precision artifacts for
distant objects

38

Orthographic Derivation

* scale, translate, reflect for new coord sys

VCS
x=left (\
y /

-
Z//K \ x=right

Z=-near

/z=-far

NDCS

(-1,-1,-1)

iy

(1,1,1)

39

Orthographic Derivation

* scale, translate, reflect for new coord sys
y=top—=y'=1
y =bot = y'=-1

VCS NDCS
yx=left y=top/\/ (1 51 51)

2/&/‘/ x=right ('1"1"1)\ \x
P
\/z=-far

Z=-near

V'=a-y+b

iy

40

Orthographic Derivation

* scale, translate, reflect for new coord sys
y=top— y'=1 l=a-top+b

y'=a-y+b |
y=bot—=y'=-1 —1=a-bot+b
1= 2 top +b
b=1-a-top,b=-1-a-bot = top — bot P
l-a-top=-1-a-bot L 2iop
1-(-1)=-a-bot - (-a-top) top — bot
2 = a(=bot + top) , _ (top —bot) —2-top
0 top — bot

a= — —

top — bot p= 1P bot

top — bot

41

Orthographic Derivation

* scale, translate, reflect for new coord sys
y=top —>y'=1
y'=a-y+b
y=bot = y'=-1

VCS 2
a =
(\ top — bot
x=left //
y top + bot

z —L b =
L//K \x=right fOp — bot

/z=-far

Z=-near

same idea for right/left, far/near

42

Orthographic Derivation

* scale, translate, reflect for new coord sys

P'=

2

right — left

0

top — bot

0

-2

far — near

0

_ right +left
right — left

_ top +bot

top — bot

far + near

far — near

1

43

Orthographic Derivation

scale,‘ translate, reflect for new coord sys

P'=

2

right — left

0

0

-2

far — near

0

_ right +left
right — left

_ top +bot

top — bot

far + near

far — near

1

44

Orthographic Derivation

. scale,‘ translate,‘ reflect for new coord sys

P'=

2

right — left

0

top — bot

0

-2

_ right +left
right — left

_ top +bot

top — bot

far — near

0

far + near

far — near

1

45

Orthographic Derivation

- scale, translate,|reflect|for new coord sys

P'=

2

right — left

0

top — bot

0

-2

far — near

0

_ right +left
right — left

_ top +bot

top — bot

far + near

far — near

1

46

Orthographic OpenGL

glMatrixMode (GL PROJECTION) ;
glLoadIdentity() ;
glOrtho (left,right,bot, top,near, far) ;

47

