University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Blending, Modern Hardware

Week 12, Mon Apr 2
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Old News

» extra TA office hours in lab for hw/project
Q&A

* next week: Thu 4-6, Fri 10-2

* last week of classes:
 Mon 2-5, Tue 4-6, Wed 2-4, Thu 4-6, Fri 9-6
* final review Q&A session
* Mon Apr 16 10-12

* reminder: no lecture/labs Fri 4/6, Mon 4/9

New News

 project 4 grading slots signup
* Wed Apr 18 10-12
* Wed Apr 18 4-6
* Fri Apr 20 10-1

Review: Volume Graphics

- for some data, difficult to create polygonal mesh
« voxels: discrete representation of 3D object
* volume rendering: create 2D image from 3D object

* translate raw densities into colors and
transparencies

« different aspects of the dataset can be emphasized
via changes in transfer functions

Review: Volume Graphics

* pros
 formidable technique for data exploration
* cons
* rendering algorithm has high complexity!
- special purpose hardware costly (~$3K-$10K)

volumetric human head (CT scan)

Review: Isosurfaces

Eleyation

» 2D scalar fields: isolines / \
- contour plots, level sets :
 topographic maps SN / :

Index Contour Lines—

3D scalar fields: isosurfaces

Review: Isosurface Extraction

* array of discrete point

samples at grid points ¢ 1 1 3 2

- 3D array: voxels 3 % ¢ 3
 find contours /

 closed, continuous 3 7 9 7 3

» determined by iso-value

7 8 6 2
* several methods
N N /
* marching cubes is most 4 > 3 4 3

common
Iso-value = 5

Review: Marching Cubes

create cube
classify each voxel

binary labeling of each voxel to create
index

use in array storing edge list
- all 256 cases can be derived from , A
15 base cases EJ 3 w @ @
interpolate triangle vertex
calculate the normal at each cube @E@Si
vertex
render by standard methods @ @@@@

The 15 Cube Combinations

| 11110100

7/

Review: Transfer Functions To Classify

* map data value to color and opacity
* can be difficult, unintuitive, and slow

Gordon Kindlmann 10

Review: Volume Rendering Algorithms

* ray casting
* iImage order, forward viewing

* splatting

* object order, backward viewing \ Q/i
* texture mapping

* object order

* back-to-front compositing

11

Review: Ray Casting Traversal Schemes

Intensity
4 Max

Blending

13

Rendering Pipeline

Geometry | [Model/View N Perspectiv .
Database Transform. Lighting Transform. EJERI
*’ Texturing |— » Blending

14

Blending/Compositing

* how might you combine multiple elements?
 foreground color A, background color B

’ b 4
Opaqu ’ :
A and ¥ *
4 i
» *
e, e,
PEBRFT N
Partially } 23422203
transparent 1 i +t<
Aand B 4 ¥

Conceptual
sub-pixel
overlay

s

{IE.I'

Premultiplying Colors

specify opacity with alpha channel: (r,g,b,a)
 o=1: opaque, a=.5: translucent, a=0: transparent

A over B
- C=0A+(1-0)B

but what if B is also partially transparent?
- C=0A+(1-0)pB= pB+cA+ B -a B

* y=p+(1-fla=p+a-of
« 3 multiplies, different equations for alpha vs. RGB

premultiplying by alpha
- C=yC,B’=8B,A’=0A

:+ C'=B'+A’-aB’

© y=p+oa-ap
* 1 multiply to find C, same equations for alpha and RGB

16

Modern GPU Features

17

Reading

 FCG Chap17 Using Graphics Hardware
 especially 17.3

 FCG Section 3.8 Image Capture and Storage

18

Rendering Pipeline

* so far

* rendering pipeline as a specific set of stages
with fixed functionality

* modern graphics hardware more flexible

* programmable “vertex shaders” replace
several geometry processing stages

» programmable “fragment/pixel shaders”
replace texture mapping stage

* hardware with these features now called
Graphics Processing Unit (GPU)

19

Modified Pipeline

e vertex shader

* replaces model/view,
lighting, and perspective

* have to implement these
yourself

 but can also implement
much more

« fragment/pixel shader
* replaces texture mapping

- fragment shader must do
texturing

* but can do other things

Vertex Shader Motivation

* hardware transform and lighting:
* l.e. hardware geometry processing

- was mandated by need for higher
performance in the late 90s

* previously, geometry processing was done on
CPU, except for very high end machines

- downside: now limited functionality due to
fixed function hardware

21

Vertex Shaders

« programmability required for more complicated
effects

- tasks that come before transformation vary widely

* putting every possible lighting equation in hardware
IS Impractical

» Implementing programmable hardware has
advantages over CPU implementations

* better performance due to massively parallel
implementations

* lower bandwidth requirements (geometry can be
cached on GPU)

22

Vertex Program Properties

* run for every vertex, independently

 access to all per-vertex properties

* position, color, normal, texture coords, other custom
properties

* access to read/write registers for temporary results

* value is reset for every vertex
 cannot pass information from one vertex to the next

 access to read-only registers

* global variables like light position, transformation
matrices

* write output to a specific register for resulting color

23

Vertex Shaders/Programs

* concept

» programmable pipeline stage

» floating-point operations on 4 vectors
* points, vectors, and colors!

* replace all of
* model/view transformation
* lighting
* perspective projection

24

Vertex Shaders/Programs

- a little assembly-style program is executed on every
individual vertex

* |t sees:
 vertex attributes that change per vertex:
* position, color, texture coordinates...

* registers that are constant for all vertices (changes
are expensive):
* matrices, light position and color, ...
» temporary registers
* output registers for position, color, tex coords...

25

Vertex Programs Instruction Set

arithmetic operations on 4-vectors:

- ADD, MUL, MAD, MIN, MAX, DP3, DP4
operations on scalars

« RCP (1/x), RSQ (1/Vx), EXP, LOG
specialty instructions

- DST (distance: computes length of vector)
* LIT (quadratic falloff term for lighting)

very latest generation:
* loops and conditional jumps
- still more expensive than straightline code

26

Vertex Programs Applications

- what can they be used for?
- can implement all of the stages they replace

» but can allocate resources more dynamically

* e.g. transforming a vector by a matrix requires 4 dot
products

» enough memory for 24 matrices

e can arbitrarily deform objects
 procedural freeform deformations

* lots of other applications
 shading
* refraction

27

Skinning

- want to have natural looking joints on human
and animal limbs

* requires deforming geometry, e.g.

* single triangle mesh modeling both upper and
lower arm

* if arm is bent, upper and lower arm remain
more or less in the same shape, but transition
zone at elbow joint needs to deform

28

Skinning

* approach:

- multiple transformation matrices

* more than one model/view matrix stack, e.qg.
one for model/view matrix for lower arm, and
one for model/view matrix for upper arm

* every vertex is transformed by both matrices
yields 2 different transformed vertex positions!

* use per-vertex blending weights to interpolate
between the two positions

29

Skinning

* arm example:
* M1: matrix for upper arm
* M2: matrix for lower arm

Upper arm:
weight for M1=1
weight for M2=0

/

K

Transition zone:
weight for M1 between 0..1
weight for M2 between 0..1

Lower arm:
weight for M1=0
weight for M2=1

30

Example
by NVIDIA

Skinning

31

Skinning

In general:

* many different matrices make sense!

* EA facial animations: up to 70 different
matrices ("bones”)

* hardware supported:

number of transformations limited by available
registers and max. instruction count of vertex
programs

but dozens are possible today

32

Fragment Shader Motivation

* idea of per-fragment shaders not new
* Renderman is the best example, but not at all real time
* traditional pipeline: only major per-pixel operation is texturing

- all lighting, etc. done in vertex processing, before primitive
assembly and rasterization

* in fact, a fragment is only screen position, color, and tex-coords
« normal vector info is not part of a fragment, nor is world position

« what kind of shading interpolation does this restrict you to?

33

Fragment Shader Generic Structure

 constant temporary

 registers registers

t:lamped arithmetic =~ ——> rgba output

~ diffuseand —> logic

~ specular o it - - - - » z-depth output
addressing
instructions

Figure 6.20. Generalized pixel shader. Variants in the pixel shader language primarily
affect the way texture address instructions work, where temporary results can be stored,
and whether the z-depth can be modified and output.

34

Fragment Shaders

fragment shaders operate on fragments in place of
texturing hardware

- after rasterization
 before any fragment tests or blending

input: fragment, with screen position, depth, color,
and set of texture coordinates

access to textures, some constant data, registers
compute RGBA values for fragment, and depth
* can also kill a fragment (throw it away)

two types of fragment shaders
* register combiners (GeForce4)
* fully programmable (GeForceFX, Radeon 9700)

35

Fragment Shader Functionality

 consider requirements for Phong shading
now do you get normal vector info?

now do you get t
now do you get t

now do you get t

ne light?
ne specular color?

ne world position”?

36

Shading Languages

« programming shading hardware still difficult
* akin to writing assembly language programs

37

Vertex Program Example

#blend normal and position « #normalize nhormal
v=av+(1-a)V, = a(v,-V)+ v, DP3R9.w, R9, RO ;
mgxig, VB% ; RSQR9.w, R9.w ;

Y ;
ADD RS, v[l], -R3 ; MUL R9, R9.w, RO ;
ADDR6, v[0], -R5 ; - # apply lighting and output color
MAD rR8, v[15].%, R8, R3 DP3R0O.x, R9, c[20] ;

MAD rR6, v[15].%x, R6, R5 ;

transform normal to eye space DP3RO.y, R9, c[22] ;

DP3R9.x, R8, c[12] ; MOV RO.zw, c[21] ;
DP3R9.y, R8, c[13] ; LITR1, RO ;

DP3R9.z, R8, c[14] ; DP3 o[COL0], c[21], Rl
transform position and output .

DP4 o[HPOS].x, R6, c[4] ; !

DP4 o[HPOS].y, R6, c[5]
DP4 o[HPOS].z, R6, c[6]
DP4 o[HPOS].w, R6, c[7]

N N WNO N

38

Vertex Programming Example

example (from Stephen Cheney)

morph between a cube and sphere while doing lighting
with a directional light source (gray output)

cube position and normal in attributes (input) 0,1
sphere position and normal in attributes 2,3
blend factor in attribute 15

inverse transpose model/view matrix in constants 12-14
used to transform normal vectors into eye space
composite matrix is in 4-7
used to convert from object to homogeneous screen space

light dir in 20, half-angle vector in 22, specular power,
ambient, diffuse and specular coefficients all in 21

39

Shading Languages

» programming shading hardware still difficult
- akin to writing assembly language programs

* shading languages and accompanying compilers
allow users to write shaders in high level languages
* examples
* Microsoft's HLSL (part of DirectX 9)
* Nvidia’s Cg (compatable with HLSL)
* OpenGL Shading Language
* (Renderman is ultimate example, but not real time)

40

Cg

* Cg is a high-level language developed by
NVIDIA

* looks like C or C++

» actually a language and a runtime
environment

» can compile ahead of time, or compile on the
fly
* what it can do is tightly tied to the hardware

41

Vertex Program Example

void CHEZv_ fragmentLighting{fleoatd position : POSITION,
floatd normal : NORMAL,

out floatd oPosition : POSITIONM,
cut float3 obijectPos : TEXCOORIM,
out £loat3d oNormal 1 TEXCOORDL,
und form floatdxd modelViewProj)
oPosition = mul {modelViewProi, position);

cbhjectPos = position.xyz;
cMormal = normal:

42

Pixel Program Example

vold CS5E3f _basicLight {£floatd
float3

out floatd

unlform floatl
unifora floatl
uniform floatl
uniform f£loat3
uniform f£loat3
uniform £loat3
‘uniform float3
uniform £loat3
uniform float

£loat3 P
~£loatd N

position.xyz;

H

position : TEXCOORDO,

normal = : TEXCOORD1,

color : COLOR,

globalambient,

lightColor, _ .

l1ightrosition, // Compute the diffuse term

eyePogition,
Ke,

Ka,

K4,

Ks, -
shininess}

na:mali:-(normal};

// Compute the emissive term

.£loat3 emissive = Ke:

// Compute the ambient term
float3 ambient = Ka * glchalAmbient;

float3 L = normalize(lightPogition - P):
float diffuseLight = max{dot(N, L), 0);
floatd diffuse = Kd * lightColer * diffuselight;

// Compute the specular term

floatd V = normalize{eyePosition - P};

float3l H = normalize({lL + V);

float specularLight = pow(max(dot(N, H), 0),
shininess};

if (diffuseLight <= 0) specularlLight = 0;

floatd specular = Ks * lightColor * specularLight;

color.xy?2

= emissive + ambient + diffuse + specular;
color.w.= 1;

43

» sequence of
commands to
get your Cg
program onto
the hardware

Cg Runtime

Cg Program Text:

v

Cg Profile: Cg Entry Function:

struet C2Blv Output {

float4 position : POSITION; arbvpl C2Elv_green
} floatd color 1 COLOR;
C2E1v_Output
C2Elv_green (float? pomitionm :
L)

C2Elv_Cutput OUT; :

oUT.position = Eloatd (pomit

OUT.color = floakd (0,1

return OUT;

v

Cg Runtime '
APl

,
i
|

ARB_vertex_program Text:

| 1ARBvVp1. 0
PARAM cD = {0,1,0,1};
ATTRIB w16 = vertex.position
MOV result.position.xy, vl6:
MOV result.color.front.prin
END

CgGL Runtim OpenGL Driver Supp

ARB_vertex_pr

|

Vertex Program Hardware Microcod

010100001011010101010
1001001000101011108
1011100110100010

|

E GPU with Prograr
; Vertex Proc

£

Figure 2-2. Compiling and Loading a Cg Program into the GPU

44

Bump Mapping

* normal mapping approach:

» directly encode the normal into the texture map
- (R,G,B)= (x,y,z), appropriately scaled
* then only need to perform illumination computation

* interpolate world-space light and viewing direction
from the vertices of the primitive
can be computed for every vertex in a vertex shader
get interpolated automatically for each pixel

* in the fragment shader:
transform normal into world coordinates
evaluate the lighting model

45

Bump Mapping

* examples

5 A AT

&\ ¥/
. 'q.), '

46

GPGPU Programming

* General Purpose GPU
 use graphics card as SIMD parallel processor
* textures as arrays
- computation: render large quadrilateral
* multiple rendering passes

47

Image Formats

* major issue: lossless vs. lossy compression
* JPEG is lossy compression

* do not use for textures

* loss carefully designed to be hard to notice
with standard image use

» texturing will expose these artifacts horribly!

e can convert to other lossless formats, but
information was permanently lost

48

Acknowledgements

» Wolfgang Heidrich
* http://www.ugrad.cs.ubc.ca/~cs314/\WHmay2006/

49

