University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Textures lll, Procedural Approaches

Week 10, Mon Mar 19
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Reading for Last Time and Today

- FCG Chap 11 Texture Mapping
- except 11.8

- RB Chap Texture Mapping
- FCG Sect 16.6 Procedural Techniques
- FCG Sect 16.7 Groups of Objects

Final Clarification: HSI/HSV and RGB

« HSV/HSI conversion from RGB
* hue same in both
 value is makx, intensity is average

N _
H =cos™ 2[(R ~ O+ _B)] if (B >G),
J(R-G)* +(R-B)G-B) || H=360-H

min(R,G,B) 7 R+G+38B
Il 3

‘Hsv: § =1 MNRG.B) v - max(R,G,B)
V 3

*HSI: S=1-

News

- H3 Q2:

* full credit for using either HSV or HIS

* full credit even if do not do final 360-H step
» H3 Q4 typo

- P1 typo, intended to be r=.5, g=.7, b=.1

- also full credit for r=.5, b=.7, g=.1

News

* Project 3 grading slot signups
* Mon 11-12
* Tue 10-12:30, 4-6
« Wed 11-12, 2:30-4

* go to lab after class to sign up if you weren't
here on Friday

* everybody needs to sign up for grading slot!

News

Project 1 Hall of Fame
http://www.ugrad.cs.ubc.ca/~cs314/Vian2007/p1hof

Project 4 writeup
 proposals due this Friday at 3pm
* project due Fri Apr 13 at 6pm

Homework 4 out later
Midterm upcoming, Wed Mar 28

Review: Basic OpenGL Texturing

* setup
 generate identifier: glGenTextures
* load image data: glTexImage2D

* set texture parameters (tile/clampl/...):
glTexParameteri

* set texture drawing mode (modulate/replace/...):
glTexEnvt

* drawing
* enable: glEnable
* bind specific texture: glBindTexture

* specify texture coordinates before each vertex:
glTexCoord2f

Review: Perspective Correct Interpolation

* screen space interpolation incorrect

S=a-so/w0+/3-sl/w1+y-sz/w2

oa/w,+P/w+y/w,

| Vo) |

Review: Reconstruction

* how to deal with:

* pixels that are much larger than texels?
- apply filtering, “averaging”

* pixels that are much smaller than texels ?
* Interpolate

Review: MIPmapping

* Image pyramid, precompute averaged versions

With MIP-mappind’

Review: Bump Mapping: Normals As Texture

 create illusion of complex
geometry model

 control shape effect by
locally perturbing surface
normal

Texturing il

12

Displacement Mapping
* bump mapping gets 5\&
silhouettes wrong

» shadows wrong too

* change surface
geometry instead
* only recently

available with
realtime graphics

* need to subdivide
surface

Environment Mapping

* cheap way to achieve reflective effect
* generate image of surrounding
* map to object as texture

14

Environment Mapping

* used to model object that reflects
surrounding textures to the eye

* movie example: cyborg in Terminator 2
+ different approaches

* sphere, cube most popular
* OpenGL support

- GL_SPHERE MAP, GL CUBE MAP

 others possible too

15

Sphere Mapping

* texture is distorted fish-eye view
* point camera at mirrored sphere

« spherical texture mapping creates texture coordinates that
correctly index into this texture map

Cube Mapping

* 6 planar textures, sides of cube

* point camera in 6 different directions, facing
out from origin

Cube Mapping

18

Cube Mapping

* direction of reflection vector r selects the face of the
cube to be indexed

» co-ordinate with largest magnitude
* e.g., the vector (-0.2, 0.5, -0.84) selects the —Z face

 remaining two coordinates (normalized by the 3™
coordinate) selects the pixel from the face.

* e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

« difficulty in interpolating across faces

19

Volumetric Texture

 define texture pattern over 3D
domain - 3D space containing
the object

* texture function can be
digitized or procedural

- for each point on object
compute texture from point
location in space

« common for natural
material/irregular textures
(stone, wood,etc...)

Marble

Volumetric Texture Principles

3D function p(x,y,z)

texture space — 3D space that holds the
texture (discrete or continuous)

rendering: for each rendered point P(x,y,z)
compute p(x,y,z)

volumetric texture mapping function/space
transformed with objects

22

Procedural Approaches

23

Procedural Textures

* generate “image” on the fly, instead of
loading from disk

* often saves space
- allows arbitrary level of detall

24

Procedural Texture Effects: Bombing

* randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
« for point P search table and determine if inside shape
* if so, color by shape
- otherwise, color by objects color

25

Procedural Texture Effects

* simple marble

function boring marble (point)
X = polint.x;
return marble color(sin(x));
// marble color maps scalars to colors

26

Perlin Noise: Procedural Textures

» several good explanations
* FCG Section 10.1

» http://www.noisemachine.com/talk1
* http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
* http://www.robo-murito.net/code/perlin-noise-math-faq.htmi

http://mrl.nyu.edu/~perlin/planet/

27

: Coherency

Perlin Noise

* smooth not abrupt changes

white noise

coherent

DLW
.

B
<h

28

Perlin Noise: Turbulence

Sum of Moise Functions = (Perlin Noise)

* multiple feature sizes
» add scaled copies of noise

Amplitude - 128 Amplitude - 64 Amplitude - 32
frequency © 4 frequency : & frequency : 16

ST

Amplitude - 16 Amplitude - 8 Amplitude - 4
frequency : 32 frequency : B4 frequency @ 128

& Fas g I
Mfw/jm e H\ N e T o AT

Perlin Noise: Turbulence

* multiple feature sizes
» add scaled copies of noise

30

Perlin Noise: Turbulence

* multiple feature sizes
» add scaled copies of noise

function turbulence (p)
t = 0, scale = 1;
while (scale > pixelsize) {

t +=
abs (Noise (p/scale) *scale) ;

scale/=2;

} return t;

31

Generating Coherent Noise

* just three main ideas
* nice Interpolation
* use vector offsets to make grid irregular
* optimization
 sneaky use of 1D arrays instead of 2D/3D one

32

Interpolating Textures

* nearest neighbor
* bilinear
* hermite

33

Vector Offsets From Grid

» weighted average of gradients

 random unit vectors gix1,y1)
(=0, y1) 1, v1
: b m
0 gix1,¥0) !
(=0, v0O; (1, wi) 0

gi=0,v0)

Optimization

* save memory and time

« conceptually:
- 2D or 3D grid
« populate with random number generator

 actually:

« precompute two 1D arrays of size n (typical size 256)
* random unit vectors
 permutation of integers 0 to n-1

* lookup
* g(i,j,k)=G[(i+ P[(j+ P[k]) modn]) modn]

35

Perlin Marble

* use turbulence, which in turn uses noise:
function marble (point)

X = polnt.x + turbulence (point)

return marble color (sin(x))

36

Procedural Modeling

* textures, geometry
* nonprocedural: explicitly stored in memory

* procedural approach
» compute something on the fly
- often less memory cost
* visual richness

* fractals, particle systems, noise

37

Fractal Landscapes

* fractals: not just for “showing math”
* triangle subdivision
* vertex displacement
* recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

38

Self-Similarity

* infinite nesting of structure on all scales

2 Ard 8t 2 ard Aerd

o e R P £ R 2 P i E R R P e

i i
Tttt Pridveas
i P
i P
Eﬁmﬂﬁﬁmﬁﬁﬁﬁéﬁéﬁéﬁé AT T E f T L L E A L P p SR

o A Pt ot Pl ol ot Al Pt ard A A Pl 8 ot T R A ot 3 ot A ot Pl Dt ol oot Atd Pt o A A

39

Fractal Dimension

* D =log(N)/log(r)
N = measure, r = subdivision scale
» Hausdorff dimension: noninteger

Koch snowflake

Initiator

. . . Length=1
coastline of Britain
;
7
i Generator
ot .
Ciramina ey Length=4/3
B B e e b v Lo b y/\u
i i
Vb R Level 2
: SN et A Length=16/9
E i EmsE
EE@%@@@@%@E%‘%E%E R A e
Level 3
LEﬂgth=E‘iI2'i'|

= log(N)/log(r) D = log(4)/log(3) = 1.26
http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html 49

Language-Based Generation

» L-Systems: after Lindenmayer 2\

- Koch snowflake: F :- FLFRRFLF
 F: forward, R: right, L: left

Length=16/9

} ;
E. 1]

Level 3
Length=64/727

 Mariano’s Bush:
F=FF-[-F+F+F]+[+F-F-F] }
* angle 16

http://spanky.triumf.ca/www/fractint/Isys/plants.html
41

1D: Midpoint Displacement

* divide in half
* randomly displace
 scale variance by half

http://www.gameprogrammer.com/fractal.html

42

2D: Diamond-Square

* fractal terrain with diamond-square approach
* generate a new value at midpoint
* average corner values + random displacement
* scale variance by half each time

N A

43

Particle Systems

* |loosely defined

* modeling, or rendering, or animation
 key criteria

» collection of particles

 random element controls attributes

e position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency

* predefined stochastic limits: bounds, variance,
type of distribution

44

Particle System Examples

objects changing fluidly over time
» fire, steam, smoke, water
objects fluid in form

* grass, hair, dust

physical processes

- waterfalls, fireworks, explosion
group dynamics: behavioral

* birds/bats flock, fish school,
human crowd, dinosaur/elephant stampede

45

Particle Systems Demos

* general particle systems
* http://www.wondertouch.com

* boids: bird-like objects
* http://www.red3d.com/cwr/boids/

46

Particle Life Cycle

* generation
* randomly within “fuzzy” location
* initial attribute values: random or fixed
* dynamics
- attributes of each particle may vary over time
» color darker as particle cools off after explosion
* can also depend on other attributes
 position: previous particle position + velocity + time
* death
* age and lifetime for each particle (in frames)
- or if out of bounds, too dark to see, etc

47

Particle System Rendering

» expensive to render thousands of particles

 simplify: avoid hidden surface calculations

 each particle has small graphical primitive
(blob)

* pixel color: sum of all particles mapping to it
» some effects easy

» temporal anti-aliasing (motion blur)
* normally expensive: supersampling over time
* position, velocity known for each particle
* just render as streak

48

Procedural Approaches Summary

Perlin noise
fractals
L-systems
particle systems

not at all a complete list!
* big subject: entire classes on this alone

49

