CPSC 314, Midterm Exam 1

9 Feb 2007

Closed book, no calculators or other electronic devices. Cell phones must be turned off. Place your photo ID face up on your desk. One single-sided sheet of handwritten notes is allowed. At the end of the exam, turn in the note sheet with the exam.
Do not open the exam until told to do so. Answer the questions in the space provided. If you run out of room for an answer, continue on the back. There are 100 points, you have 50 minutes.
Good luck!

Name: \qquad

Student Number: \qquad

Question	Points Earned	Points Possible
1		24
2		8
3		10
4		12
5		16
6		14
7		16
Total		100

1. (24 pts) For each equation below, sketch the new location L ' of the L shape on the grid and provide the OpenGL sequence needed to carry out those operations. Use the function drawL (), which draws an L shape with the lower left corner at the current origin as shown below. You may assume the matrix mode is GL_MODELVIEW and that the stack has been initialized with $g l$ LoadIdentity (). For reference, the OpenGL command syntax is $g l \operatorname{Rotatef}(a n g l e, x, y, z)$, glTranslatef(x,y,z), glScalef(x,y,z).

drawL();

$$
\mathbf{A}=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \mathbf{B}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \mathbf{C}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \mathbf{D}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

a) $L^{\prime}=A B C L$

c) $L^{\prime}=\mathrm{CBD} L$

b) $\mathrm{L}^{\prime}=\mathrm{CAD} \mathrm{L}$

d) $L^{\prime}=$ DCCAD L

2. (8 pts) The point \mathbf{p} can be specified as $\mathbf{p}_{A}=(3,4)^{T}$ in the coordinate frame A, with orthonormal basis vectors \mathbf{i} and \mathbf{j}. Specify the coordinates of point \mathbf{p} in frames B and C.

3. (10 pts) Find the 3×3 homogeneous transformation which transforms a point from Frame C into the Frame A coordinate system. That is, give M where $\mathbf{p}_{A}=M \mathbf{p}_{C}$. Verify your solution using one of your answers to question 2.
4. (12 pts) True/false

- Specifying the eye point, lookat point, and up vector completely determines a projective camera transformation.
- If a surface is transformed by a rotation, transforming its normal vector by the same rotation will leave it perpendicular to the surface.
- The homogeneous points $(2,5,2,2)$ and $(2,5,0,4)$ map to the same Cartesian point after homogenization.
- Including an affine transformation in a display list will cause the object to shear with respect to the image plane.
- After undergoing an orthographic projection, a unit cube will appear to have either 1 or 2 vanishing points, but cannot have 3 .
- A nonuniform scaling transformation leaves the w coordinate of a homogeneous point unchanged.
- Both oblique and orthographic projections have projectors perpendicular to the projection plane.
- The transformation from an orthographic view volume to the normalized device coordinate system depends on the size of the viewport.
- After transforming from a perspective view volume to the normalized device coordinate system, the x coordinate of a visible point has a range of 2 .
- Affine transformations can change the origin of the local coordinate frame.
- $B A p=A B p$ when

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{llll}
1 & 0 & 0 & 9 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 7 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

5. (16 pts) Draw shapes $2,3,4$, and 5 transformed by the appropriate OpenGL commands in the left column below. The drawShape () code is shown in the middle column, and the result of the first call is shown in the right column.
glIdentity();
drawShape(); // shape 1 glTranslate (2,-3,0); drawShape(); // shape 2 glRotate(90, 0, 0, 1); drawShape(); // shape 3 glPushMatrix(); glTranslate(1, 0, 0); drawShape(); // shape 4 glTranslate(0, 2, 0); glScale(2,1,1); glRotate (90, 0, 0, 1); glTranslate (-1, 0, 0); glPopMatrix(); glScale(1, .5, 1); glTranslate(0, -2, 0); drawShape(); // shape 5
a) shape 2
c) shape 4


```
drawShape() {
    glBegin(GL_POLYGON);
    glVertex(0,0,0,1);
    glVertex(2,0,0,1);
    glVertex(2,1,0,1);
    glVertex(1,1,0,1);
    glVertex(1,3,0,1);
    glVertex(0,3,0,1);
    glEnd(GL_POLYGON);
}
```


b) shape 3

d) shape 5

6. (14 pts) A square is drawn in world coordinates, with vertices $(3,2,0,1)^{T},(4,2,0,1)^{T},(4,3,0,1)^{T},(3,3,0,1)^{T}$. (That is, vertices are column vectors.) The camera has an eye point of $(6,5,0,1)^{T}$, a lookat point of $(4,3,0,1)^{T}$, and an up vector of $(0,0,1,1)^{T}$. The view frustum has a near plane of 4 and a far plane of 6 , with an aspect ratio of $1: 1$ and field of view of 90°.
a) Provide a new value for the near plane location so that the object is entirely contained within the view frustum and within one unit of the near plane.
b) If the eye point is then changed to $(0,10,0,1)$, will the entire object be within the view frustum? All other parameters stay the same, including the near clipping plane value you provided above.
7. (16 pts) Construct a matrix $M=A B C$ that transforms points from normalized device coordinates (NDCS) to display coordinates (DCS) given a viewport of width 1000 and height 1000 with the origin in the upper left. Show your intermediate work.

